Nilpotent (and soluble?) Hopf Galois Structures

Nigel Byott

University of Exeter, UK

Omaha, 29 May 2013

Hopf-Galois Structures

Let L/K be a finite Galois extension of fields, with $\Gamma = \operatorname{Gal}(L/K)$.

A Hopf-Galois structure on L/K consists of a Hopf algebra H over K and a "nice" K-linear action of H on L (basic example: $H = K[\Gamma]$):

• the action is compatible with the multiplication on N:

$$\alpha \cdot (xy) = \operatorname{mult} (\Delta(\alpha) \cdot (x \otimes y)),$$

$$\alpha \cdot 1 = \epsilon(\alpha) 1$$
 for all $\alpha \in K[G], x, y \in L$,

where Δ is the comultiplication and ϵ the augmentation;

• ("Galois", i.e. non-degeneracy, condition): the following map is bijective:

$$\theta: L \otimes_{\mathcal{K}} H \longrightarrow \operatorname{End}_{\mathcal{K}} L, \quad \theta(x \otimes h)(y) = x(h \cdot y).$$

In particular, this means $\dim_{K} H = [L : K]$ and H acts faithfully on L.

Classifying Hopf Galois Structures

Greither and Pareigis (1987) showed the Hopf Galois structures correspond bijectively to subgroups G of the (large) group $\operatorname{Perm}(\Gamma)$ which are **regular** (i.e. given x, $y \in \Gamma$ there is a unique $g \in G$ with $g \cdot x = y$) and are normalised by $\lambda(\Gamma)$, the left translations by Γ .

We can turn around the relation between Γ and G:

Hopf Galois structures correspond to equivalence classes of regular embeddings

 $\Gamma \longrightarrow \operatorname{Hol}(G) \subseteq \operatorname{Perm}(G),$

where G is an abstract group with $|G| = |\Gamma|$, and

$$\operatorname{Hol}(G) = \{(g, \alpha) \mid g \in G, \alpha \in \operatorname{Aut}(G)\},\$$

with $(g, \alpha)(h, \beta) = (g\alpha(h), \alpha\beta)$, i.e.

$$\operatorname{Hol}(G) = \lambda(G) \rtimes \operatorname{Aut}(G).$$

Two embeddings are deemed to be equivalent if they are conjugate by an element of Aut(G).

The **type** of the HGS is (the isomorphism class of) G.

We can use this to count the HGS on a field extension L/K with given Galois group Γ .

Example: Cyclic Extensions of Prime-Power Degree

For $\Gamma = C_{p^r}$ with p an odd prime, there are p^{r-1} Hopf Galois structures, all with $G = C_{p^r}$ [Kohl].

The case p = 2 is more complicated: for $\Gamma = C_{2^r}$,

- if r = 1, there is one Hopf Galois structure, with $G = C_2$;
- if r = 2, there is one Hopf Galois structure with $G = C_4$ and one with $G = C_2 \times C_2$;
- if $r \ge 3$, there are $3 \cdot 2^{r-2}$ Hopf Galois structures, 2^{r-2} each for $G = C_{2^r}$, Q_{2^r} , D_{2^r} .

Non-abelian HGS on abelian extensions

"Most" abelian Γ admit a non-abelian HGS.

Theorem (L. Childs + NB)

Let Γ be an abelian group of order n. Then a Galois field extension with group Γ admits a non-abelian HGS if any of the following hold:

(i) Γ contains a non-cyclic p-subgroup of order $\geq p^3$;

(ii)
$$n$$
 is even and $n > 4$;

(iii)

$$\Gamma = \prod_{m{p}\in\Theta} (C_{m{p}} imes C_{m{p}}) imes \prod_{m{p}\in\Psi} C_{m{p}^{e_{m{p}}}},$$

where $\Theta,\,\Psi$ are disjoint sets of primes, and either

(a) (q, p-1) > 1 for some $p, q \in \Theta \cup \Psi$, or (b) (q, p+1) > 1 for some $p \in \Theta, q \in \Theta \cup \Psi$.

On the other hand, there are some n, such as $n = 3^2 \times 11^2$ or $7^3 \times 19$, such that, if $\Gamma = C_n$, then every Hopf-Galois structure must have type C_n , even though non-abelian groups G of order n exist.

Counting Nilpotent Hopf Galois Structures

A finite group G is **nilpotent** if it is the direct product of its Sylow subgroups,

$$G=\prod_{p}G_{p},$$

(e.g. if G is abelian or a p-group).

Let Γ be nilpotent. Define $e_{\rm nil}(\Gamma)$ to be the number of nilpotent HGS on a Galois extension with group $\Gamma.$

This is the number of equivalence classes of regular embeddings

 $\beta : \Gamma \longrightarrow \operatorname{Hol}(G)$

as G ranges through nilpotent groups of order $|\Gamma|$.

Since each G_p is a *characteristic* subgroup of G (i.e. it is fixed under all automorphisms), we have

$$\operatorname{Aut}(G) = \prod_{\rho} \operatorname{Aut}(G_{\rho}), \qquad \operatorname{Hol}(G) = \prod_{\rho} \operatorname{Hol}(G_{\rho}).$$

We are looking for

$$\beta:\prod_{p} \Gamma_{p} \longrightarrow \prod_{q} \operatorname{Hol}(G_{q}).$$

We can write β as a "matrix" (β_{pq}) where $\beta_{pq} : \Gamma_p \longrightarrow Hol(G_q)$.

Lemma

 β is regular \Leftrightarrow each β_{pp} is regular.

If β is a regular embedding then, for $p \neq q$, the group $\beta_{pq}(\Gamma_p)$ must centralise the regular subgroup $\beta_{qq}(\Gamma_q)$ of $\operatorname{Hol}(G_q)$, so must be a q-group. Hence $\beta_{pq}(\Gamma_p)$ is trivial.

Hence β is a regular embedding if and only if (β_{pq}) is a diagonal matrix whose diagonal entries are regular embeddings.

Hence we have

Theorem

For a nilpotent group Γ :

$$e_{\mathrm{nil}}(\Gamma) = \prod_{p} e_{\mathrm{nil}}(\Gamma_{p}).$$

Corollary (Nilpotent HGS on cyclic extensions) Let $r(n) = \prod_{p|n} p$, the radical of n. Then $e_{nil}(C_n) = \begin{cases} \frac{n}{r(n)} & \text{if } 8 \nmid n;\\ \frac{3}{2} \left(\frac{n}{r(n)}\right) & \text{if } 8 \mid n. \end{cases}$

(But a cyclic extension may also have HGS which are not nilpotent!)

HGS of nilpotent type

Theorem

Suppose a Galois extension with group Γ admits a HGS of type G, with G nilpotent. Then Γ is soluble.

Recall this means we have subgroups

$$1 = \Gamma_0 \lhd \Gamma_1 \lhd \cdots \lhd \Gamma_s = \Gamma$$

with each Γ_{i+1}/Γ_i abelian.

Let J be a group with $|J| = p^r m$, where p is prime and $p \nmid m$. Then a **Hall** p'-subgroup of J is a subgroup H with |H| = m. Unlike Sylow p-subgroups, these don't always exist.

e.g. If $J = A_5$ of order 60, then J has a Hall p'-subgroup for p = 5 but not for p = 2 or p = 3.

In fact, J has a Hall p'-subgroup for every $p \Leftrightarrow J$ is soluble (Hall, 1937).

10 / 1

Now suppose we have a regular embedding

$$\beta: \Gamma \longrightarrow \operatorname{Hol}(G)$$

with
$$G = \prod_{p} G_{p}$$
 nilpotent.

For each p, let

$$H_p = \prod_{q \neq p} G_q,$$

a Hall p'-subgroup of G. Then G_p is characteristic in G. (It consists of all elements of order prime to p.)

Define

$$\Delta_{\boldsymbol{\rho}} = \{ \gamma \in \boldsymbol{\Gamma} \mid \beta(\gamma) \cdot \boldsymbol{e}_{\boldsymbol{G}} \in \boldsymbol{H}_{\boldsymbol{\rho}} \}.$$

Since $\beta(\Gamma)$ is regular, it is obvious that Δ_p is a *subset* of Γ has size $|H_p|$.

Since H_p is characteristic in G, we can prove:

Lemma

 Δ_p is a subgroup of Γ .

Proof. Let $\gamma \in \Delta_p$, say $\beta(\gamma) \cdot e_G = h \in H_p$. Then $\beta(\gamma) = (h, \alpha)$ for some $\alpha \in \operatorname{Aut}(G)$. Given another $\gamma' \in \Delta_p$, say $\beta(\gamma') = (h', \alpha')$, we have

$$\beta(\gamma\gamma') = (h, \alpha)(h', \alpha') = (h\alpha(h'), \alpha\alpha')$$

and $\beta(\gamma\gamma') \cdot e_G = h\alpha(h') \in H_p$ since $\alpha(H_p) = H_p$. So $\gamma\gamma' \in \Delta_p$.

So Δ_p is a Hall p'-subgroup of Γ .

Since Γ has a Hall p'-subgroup for each p, Γ is soluble.

Must a HGS on an abelian extension be soluble? Suppose an extension with Galois group Γ admits a HGS of type G. We have shown that

G nilpotent $\Rightarrow \Gamma$ soluble.

Here is a strategy (as yet not completely implemented) to prove a weak converse:

Theorem?

 Γ abelian \Rightarrow G soluble,

i.e. every HGS on an abelian extension must be soluble.

Remark: One might wonder if Γ soluble $\Leftrightarrow G$ soluble, or, more generally, whether Γ and G always have the same composition factors. This turns out not to be the case. It is not difficult to construct an example with $\Gamma = A_4 \times C_5$ and $G = A_5$. I do not know of any examples where Γ is insoluble but G is soluble.

Nigel Byott (University of Exeter, UK)

So suppose Γ is abelian, and we have a regular embedding

 $\beta : \Gamma \hookrightarrow \operatorname{Hol}(G).$

If H is a characteristic subgroup of G then β induces a homomorphism

$$\overline{\beta}: \Gamma \longrightarrow \operatorname{Hol}(G/H),$$

whose image is a transitive *abelian* subgroup of Hol(G/H). Hence this image is regular on G/H.

Let $\Sigma = \ker(\overline{\beta})$. Then $|\Sigma| = |H|$ and the abelian group Σ acts regularly on H.

It will suffice to show G/H and H are both soluble.

Inductively, we can therefore reduce to the case where G is *characteristically simple*.

Now a characteristically simple group H has the form

$$H = \underbrace{T \times T \ldots \times T}_{m}$$

for some simple group T and some $m \ge 1$.

So we need to show that we cannot have a regular embedding

$$\Gamma \hookrightarrow \operatorname{Hol}(T^m)$$

where Γ is abelian and T is a **non-abelian** simple group. In this case

$$\operatorname{Aut}(T^m) = (\operatorname{Aut}(T)^m) \rtimes S_m = \operatorname{Aut}(T) \operatorname{wr} S_m,$$

where S_m is the symmetric group permuting the *m* factors.

Aside: Classification of Finite Simple Groups

The finite simple groups are

- cyclic of prime order (the only abelian ones!);
- alternating groups A_n for $n \ge 5$;
- (classical or exceptional) groups of Lie type: there 16 families of these, of which the easiest to describe is

 $\mathrm{PSL}_n(q), \quad n \geq 2, \quad q \text{ a prime power;}$

• 26 sporadic simple groups (smallest is the Matthieu group M_{11} of order 7290; largest is the Monster of order approx 8×10^{53}).

Back to HGS on abelian extensions

Can we have a regular embedding of an abelian group Γ in

$$\operatorname{Hol}(T^m) = T^m \rtimes (\operatorname{Aut}(T)^m \rtimes S_m)$$

when T is a non-abelian simple group?

 $\operatorname{Aut}(\mathcal{T})$ contains the subgroup of inner automorphisms $\operatorname{Inn}(\mathcal{T}) \cong \mathcal{T}$, and, as a consequence of the Classification of Finite Simple Groups, we know that the quotient

$$\operatorname{Out}(T) = \frac{\operatorname{Aut}(T)}{\operatorname{Inn}(T)}$$

is (soluble and) small relative to T.

e.g. for T sporadic, $|Out(T)| \le 2$.

Projecting Γ into successive quotients in the sequence

$$1 \longrightarrow T^m \longrightarrow (T \rtimes \operatorname{Inn}(T))^m \longrightarrow \operatorname{Hol}(T)^m \longrightarrow \operatorname{Hol}(T)^m \rtimes S_m,$$

we get abelian subgroups

$$\Gamma_1 \leq S_m$$
 $\Gamma_2 \leq \operatorname{Out}(T)^m$, $\Gamma_3 \leq \operatorname{Inn}(T)^m \cong T^m$, $\Gamma_4 \leq T^m$

such that

$$|\Gamma_1| |\Gamma_2| |\Gamma_3| |\Gamma_4| = |\Gamma| = |\mathcal{T}|^m.$$

Why shouldn't this be possible? A non-abelian simple group should not contain a "large" abelian subgroup.

There is a theorem which (almost) guarantees this:

Theorem (Vdovin, 1999)

Let T be a non-abelian simple group not of the form $PSL_2(q)$, and let A be an abelian subgroup of T. Then $|A|^3 < |T|$.

[Note: $C_5 < A_5$ and $5^3 > 60$. But $A_5 \cong PSL_2(5) \cong PSL_2(4)$.]

Proof: Use the Classification of Finite Simple Groups.

It follows that if A is an abelian subgroup of T^m then $|A|^3 < |T^m|$.

Thus, for a particular non-abelian simple group T, if we know |T| and |Out(T)|, we have upper bounds on $|\Gamma_i|$ for i = 1, ..., 4, and we should be able to show $|\Gamma| < |T^m|$.

This (or a slight variation) works for the alternating groups A_n , for $PSL_n(q)$ (including n = 2) and for the sporadic groups. It still needs to be checked for the other families of groups of Lie type.