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Setting

Let p be prime and Qp be the p-adic numbers.

Elements of Qp look like Laurent series in p:

a−t
1

pt
+ · · ·+ a−1

1

p
+ a0 + a1p + a2p2 + · · ·

with 0 ≤ ai ≤ p − 1. (Note: The ai can be identified with
elements in the finite field Z/pZ ∼= Fp.)

Think of them as “base p” numbers with a topology such that

n→∞ implies pn → 0.



Let K be an algebraic extension of Qp, then there is a “prime
element” πK ∈ K such that every element α ∈ K can be written as

α = a−t
1

πtK
+ · · ·+ a−1

1

πK
+ a0 + a1πK + a2π

2
K + · · ·

This time, the ai can be identified with elements in finite field Fpf

Each α has a “largest power of πK that can be “factored out”, its
valuation. We say,

vK (α) = −t.

The integers are those elements “without denominator”

OK = {x ∈ K : vK (x) ≥ 0}.

There is a unique maximal ideal

PK = {x ∈ K : vK (x) > 0}.

The quotient OK/PK
∼= Fpf is called the residue field.



Today’s topic

p ∈ Q ⊂ Qp ⊂ K . So vK (p) ∈ Z

For certain questions, the size of vK (p) matters. We say

absolute ramification matters.

For example, say 1 + α ∈ 1 + PK , then

vK ((1 + α)p − 1) =


vK (αp) if vK (α) < vK (p)/(p − 1),

??? if vK (α) = vK (p)/(p − 1),

vK (pα) if vK (α) > vK (p)/(p − 1).



Similar setting

There are similar fields K = Fpf ((T )), where every element α ∈ K
can be written as

α = a−t
1

T t
+ · · ·+ a−1

1

T
+ a0 + a1T + a2T 2 + · · ·

Here the ai are elements in Fpf . The field has characteristic p.

Again elements have valuation. So we say

vK (α) = −t.

There are integers, a unique maximal ideal, etc. all defined
similarly.
Except, here p is zero, and zero is infinitely divisible. So

vK (p) =∞.



For 1 + α ∈ 1 + PK , instead of

vK ((1 + α)p − 1) =


vK (αp) if vK (α) < vK (p)/(p − 1),

??? if vK (α) = vK (p)/(p − 1),

vK (pα) if vK (α) > vK (p)/(p − 1).

we have
vK ((1 + α)p − 1) = vK (αp)

But this last statement is obvious, which leads to our main point.

Easy observations in characteristic p can give us part of the
characteristic 0 answer. Not the lower bound on vK (p), but at
least the equality that holds under that bound. And that might be
just the foot–in–the–door that we need.



Main Point
Integral Galois module structure, the classification of Hopf orders
over K a finite extension of Qp – these are old and difficult topics.

Complicated. We get bogged down. Progress is slow.

Where there is a question with an answer that we just can’t see,
perhaps we should restrict our ambitions to a partial answer – the
answer that holds in char. p.

This is our “characteristic independent” answer.

If we interpret the title “Les corps locaux de caractéristique p,
limites de corps locaux de caractéristique 0” of (Deligne, 1984) to
say that for “the questions that we ask”, the characteristic p
answer will hold in characteristic 0,

“if vK (p) is large enough”

Then...



Then...

All we need to do is follow these steps:

1. work the answer out in characteristic p,

2. determine lower bounds on vK (p) for our characteristic
independent answer to hold in characteristic zero,

”geometric result”

and then

3. turn to the complement.

”arithmetic result”

And if we are “lucky”, we will get the complement for free.



Re-frame old results: Hopf orders in K [Cp]
When K has characteristic p, it is easy to see that

OK

[
σ − 1

πiK

]
with i ≥ 0 is a Hopf order in K [Cp] where Cp = 〈σ〉.

Closure under multiplication and co-multiplication are easy. (The
converse is a little more involved.)

Step 1 is done.

When K has characteristic 0, these are the Tate-Oort orders under

0 ≤ i ≤ vK (p)

p − 1
.

Note: Lower bound on vK (p). Step 2 is done.

All Hopf orders are Tate-Oort. No complement. Step 3 for free.



Re-frame old results: Hopf orders in K [Cp2]

Using truncated exponentiation

(1 + X )[Y ] =

p−1∑
i=0

(
Y

i

)
X i ∈ Z(p)[X ,Y ],

it isn’t hard to show that for K a local field of characteristic p,

H1 = OK

[
σp − 1

πiK
,
σ(σp)[µ] − 1

πjK

]

is a Hopf order under

i ≥ pj , and vK (µ) ≥ j

p
− i .



Using Childs’ book, there are two things to check

1. (σu)p ∈ 1 + πpjK OK

[
σp−1
πi
K

]
, and

2. ∆(u) ≡ u ⊗ u mod OK

[
σp−1
πi
K

]
⊗OK

[
σp−1
πi
K

]
where

u = (σp)[µ].

The first is trivial, since up = 1 in characteristic p. This leads to
the “p-adic condition” i ≥ pj .

The second, requires more work, and leads to vK (µ) ≥ j/p − i .

(Step 1 still requires the converse – Rob’s topic on Friday.)

Still, things are much easier than in characteristic 0, which is
where the Greither orders were originally defined.



Greither orders...

Let K/Qp be finite, ζp ∈ K , and set e ′ = vK (p)/(p − 1). Set
i ′ = e ′ − i , j ′ = e ′ − j . Assume e ′ > i ≥ pj > 0. Then

H2 = OK

[
σp − 1

πi
,
σav − 1

πj

]
is a Greither order in K [Cp2 ] for v ∈ 1 + P

max{i ′+j/p,i ′/p+j}
K ,

av =
∑p−1

m=0 vmem where em = (1/p)
∑p−1

n=0 ζ
−mn
p σpn.

(with Underwood) Set µ = 1
ζp−1

∑p−1
r=1

(1−v)r
r . If e ′ > i + j , then

vK (µ) ≥ j/p − i and
H2 = H1.

Greither orders have a characteristic independent description.

Step 2 is done.



(Underwood 1994) shows that a Hopf order in K [Cp2 ] with ζp ∈ K
is a Greither order, or its dual is a Greither order.

Step 3 is much less for free, but still the complement can be
described in terms of the characteristic independent objects.

But here we are retreading old material.

Towards new results... Hopf orders in K [Cp3 ]

Families have been given (Underwood, 1994) Realizable ones are
missing (Underwood, Childs, 2006)

(Underwood, 2008) provides a realizable family.

More work is needed.



Towards new results: Hopf orders in K [Cp3]

Let σ generate Cp3 and let K = Fq((t)).

Let i , j , k ≥ 0 satisfy i ≥ pj ≥ p2k . Assume vK (µ) ≥ j/p − i ,
vK (η) ≥ k/p − i and vK (ν) ≥ k/p − j . Then

H = OK

σp2 − 1

t i
,

(σp
2
)[µ]σp − 1

t j
,

(
(σp

2
)[µ]σp

)[ν]
(σp

2
)[η]σ − 1

tk


is a Hopf order in K [Cp3 ].

The converse is needed before Step 1 is done.

Need step 2. See Thursday’s talk for a strategy and its
implementation with K [C 3

p ].

Step 3 will be very interesting!



Irritant in the “oyster”

Vernon Armitage gave an expository lecture on the history of
Taylor’s Theorem at the 1994 Durham meeting on Arithmetic
Galois Modules

I Late 60’s: Armitage – irritant in the oyster

I 1971: J.-P. Serre’s “crazy idea”

I 1972: Fröhlich’s Conjecture

I 1981: Martin Taylor’s Theorem – the pearl of GMT

My aspirations are at the level of laying down irritants. We need
some crazy ideas, a conjectural framework, and then some

PEARLS!!



Childs’ Tricotomy from last year
Starting with the state of Galois Module Theory at time of Childs’
book, several directions of research:

I Field level: counting and classifying Hopf Galois structures on
field extensions with a given Galois group: Byott and Childs’
talks on Thursday.

I Hopf orders level: given a Hopf algebra H over a local field K
with valuation ring R, find (classify) Hopf orders over R in H.
Koch today, and Underwood on Friday.

I Arithmetic of local field extensions: given a H-Hopf Galois
extension L/K of local fields with valuation rings S/R, find
conditions (ramification conditions + ?) so that
(a) S is free over the associated order A of S in H, or
(b) the associated order of S in H is a Hopf order in H.

Griff works exclusively in III. Rob has worked predominantly in II.
Alan works in II predominantly, but by entirely different methods.
Recently, Lindsay has worked in I.
After the dust settles from this week, I will go back to working
things out in local field extensions.



Projects

Left on my own, I will work on

I Galois scaffolds in Cpn -extensions of local function fields –
describing the extensions with Galois scaffolds in terms of
Witt vectors.

I Artin-Schreier-Witt extensions in characteristic zero.
(Describing cyclic extensions of local number fields by Witt
vectors.)

Where I see a dividend (because just because you figure something
out, doesn’t mean that anyone else will care), is in developing
families of Hopf orders.



Interesting Project

Let G be a p-group with presentation:

G = G1 = {σa11 σ
a2
2 · · ·σ

an
n : 0 ≤ ai ≤ p − 1}

along with normal subgroups

G1 D G2 D G3 · · · D Gn D {1}

defined by Gi = {σaii · · ·σann : 0 ≤ ai ≤ p − 1}. Is there interest in
determining generic (independent of G , incl. non-abelian)
conditions on



Mi ∈ Z and vK (µi ,j) where µi ,j ∈ K so that

OK

[
Θn − 1

πMn
K

,
Θn−1 − 1

π
Mn−1

K

,
Θn−2 − 1

π
Mn−2

K

, . . .

]

where

Θn = σn

Θn−1 = σn−1Θ
[µn−1,n]
n

Θn−2 = σn−2Θ
[µn−2,n]
n Θ

[µn−2,n−1]
n−1

Θn−3 = σn−3Θ
[µn−3,n]
n Θ

[µn−3,n−1]
n−1 Θ

[µn−3,n−2]
n−2

...

is a Hopf order in K [G ]? Sharp conditions (the boundary) will
depend upon the group. Indeed, determine the group?



Now to other “questions that we ask”

If K has characteristic p and L/K is a cyclic extension of degree p
with ramification number b, then

I L/K is Artin-Schreier: L = K (x) for some x such that
xp − x = β ∈ K .

I The ramification number b = −vK (β) can be any integer
relatively prime to p.

If K is a finite extension of Qp then

1 ≤ b ≤ pvK (p)

p − 1
,

and if b < pvK (p)/(p − 1) then

I L/K is Artin-Schreier: L = K (x) for some x such that
xp − x = β ∈ K (MacKenzie, Whaples, 1956)

I The ramification number b = −vK (β) satisfies p - b.



Cp2-extensions

If K has characteristic p

I L/K is Artin-Schreier: L = K (x1, x2) where

xp
1 − x1 = β1

xp
1 − x1 =

xp
1 + βp1 − (x1 + β1)p

p
+ β2

I The ramification numbers b1 = −vK (β) and
b2 ≥ (p2 − p + 1)b1 can be any integers relatively prime to p,
except b2 > (p2 − p + 1)b1 implies b2 6≡ −(p − 1)b1 mod p2.

If K is a finite extension of Qp then

1 ≤ b1 ≤
pvK (p)

p − 1
, 1 ≤ b1 ≤

p2vK (p)

p − 1

and if b1 ≥ vK (p)/(p − 1) then b2 = b1 + pvK (p), otherwise
“unstable ramification” (Wyman, 1969)



Picture in char 0: Possible ramification pairs (b1, b2)

p = 3



Picture in char 0: Possible ramification pairs (b1, b2)

p = 3 Artin-Schreier-Witt (Alex James)



Picture in char 0: Possible ramification pairs (b1, b2)

p = 3 Galois scaffold



Picture in char 0: Possible ramification pairs (b1, b2)

p = 7



Picture in char 0: Possible ramification pairs (b1, b2)

p = 7 Artin-Schreier-Witt (Alex James)



Picture in char 0: Possible ramification pairs (b1, b2)

p = 7 Galois scaffold


