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Notation

K = local field

OK ⊃MK = πKOK

K = OK/MK is a finite field of characteristic p.

Hence K ∼= K ((T )) or [K : Qp] <∞.

vK : K → Z ∪ {∞} is the normalized valuation on K .

vK (K×) = Z

If L/K is a finite extension then similar definitions apply to L.



Ramification in Finite Galois Extensions
L/K finite totally ramified Galois extension, G = Gal(L/K ).

For σ ∈ G define i(σ) = vL(σ(πL)− πL)− 1.

For x ≥ 0 set Gx = {σ ∈ G : i(σ) ≥ x}. Then

1. Gx E G ,

2. Gx = Gi with i = dxe,
3. x ≤ y ⇒ Gy ⊂ Gx ,

4. Gx = {1} for x � 0.

For i ≥ 1 there is a group embedding

Gi/Gi+1 ↪→Mi
L/Mi+1

L

σGi+1 7→
σ(πL)− πL

πL
+Mi+1

L .

Hence Gi/Gi+1 is an elementary abelian p-group.



The Upper Ramification Numbering

Let K ⊂ M ⊂ L and set H = Gal(L/M). Then Hx = Gx ∩ H .

If H E G , how to determine (G/H)x? Define

φL/K (x) =

∫ x

0

dt

|G0 : Gt |
,

ψL/K (x) = φ−1
L/K (x),

G x = GψL/K (x).

Then

ψL/K (x) =

∫ x

0

|G 0 : G t | dt.

Herbrand’s Theorem: Let K ⊂ M ⊂ L with H = Gal(L/M)
normal in G = Gal(L/K ). Then (G/H)x = G xH/H .



Ramification in Infinite Galois Extensions

Let L/K be an infinite totally ramified Galois extension, with
G = Gal(L/K ). Set

EL/K = {K ⊂ M ⊂ L : [M : K ] <∞, M/K Galois}.

Then L =
⋃

M∈EL/K

M .

For M ∈ EL/K set HM = Gal(L/M).

Then G ∼= lim
←−

(G/HM).

Define G x = lim
←−

(G/HM)x .

This makes sense thanks to Herbrand’s Theorem.



Arithmetically Profinite Extensions

Say the totally ramified Galois extension L/K is APF if
|G : G x | <∞ for all x ≥ 0.

In this case define:

ψL/K (x) =

∫ x

0

|G 0 : G t | dt,

φL/K (x) = ψ−1
L/K (x),

Gx = GφL/K (x).

Example: Let L/K be a totally ramified abelian extension.
Then L/K is APF by class field theory.

Example: Let L/K be a totally ramified Galois extension such
that Gal(L/K ) is a p-adic Lie group. Then L/K is APF.



Ramification Breaks

Definition: Let L/K be an APF extension. Say b ≥ 0 is a
“lower ramification break” for L/K if Gb 6= Gb+ε for every
ε > 0.

Let b1 < b2 < b3 < . . . be the positive lower ramification
breaks of L/K . For n ≥ 1 let Ln denote the fixed field of Gbn .
Then

1. Gal(Ln/K ) ∼= G/Gbn

2. Gal(Ln+1/Ln) ∼= Gbn/Gbn+1 is an elementary abelian
p-group.

3. NLn+1/Ln : OLn+1 → OLn preserves ·, but not +.



The Field of Norms

Let L/K be a totally ramified APF extension, and for n ≥ 1 set

sn = d(1− p−1)bne

Rn = OLn/Msn
Ln
.

Then Rn
∼= K [T ]/(T sn).

Theorem: NLn+1/Ln : OLn+1 → OLn induces a well-defined

surjective ring homomorphism Nn+1,n : Rn+1 → Rn.

Definition: The field of norms X (L/K ) of L/K is defined by

R(L/K ) = lim
←−

Rn
∼= K [[T ]]

X (L/K ) = Frac(R(L/K )) ∼= K ((T )).



The Nottingham Group

The following are groups with the operation of power series
composition:

A(K ) = {c0T + c1T 2 + c2T 3 + · · · : ci ∈ K , c0 6= 0}
N (K ) = {T + c1T 2 + c2T 3 + · · · : ci ∈ K}

N (K ) is known as the “Nottingham group”. We have

AutK (K ((T ))) ∼= A(K ).



Group Actions

Let L/K be a totally ramified APF extension.

Then G = Gal(L/K ) acts on Rn, R(L/K ), and X (L/K ).

Hence there is an embedding

G ↪→ AutK (X (L/K )).

By choosing a uniformizer ω for X (L/K ) we get isomorphisms

X (L/K ) ∼= K ((T ))

AutK (X (L/K )) ∼= AutK (K ((T ))) ∼= A(K ).

Therefore we get an embedding

jω : G ↪→ A(K ).



A Conjugacy Class Associated to L/K

Choosing a different uniformizer ω′ for X (L/K ) gives another
embedding

jω′ : G ↪→ A(K )

which may be different from jω.

However, the image jω′(G ) is conjugate to jω(G ) in A(K ). In
fact every subgroup of A(K ) which is conjugate to jω(G ) is
equal to jω′(G ) for some uniformizer ω′ for X (L/K ).

Let C(L/K ) denote the conjugacy class of subgroups A(K )
corresponding to L/K :

C(L/K ) = {jω(G ) : vX (L/K)(ω) = 1}



Ramification in A(K )
For h ∈ A(K ) define

i(h) = vK((T ))(h(T )− T )− 1.

Thus i(h) = n ≥ 1 if and only if there is cn ∈ K
×

such that

h(T ) = T + cnT n+1 + · · · .

Let Γ ≤ A(K ). By analogy with Galois groups we define

Γx = {σ ∈ Γ : i(σ) ≥ x}

φΓ(x) =

∫ x

0

dt

|Γ0 : Γt |
.

Suppose L/K is an APF extension and ω is a uniformizer for
X (L/K ) such that Γ = jω(G ), where G = Gal(L/K ). Then
Γx = jω(Gx) for x ≥ 0.



Zp-subgroups of N (K )

Let h ∈ N (K ) have infinite order. Then the closure of the
subgroup of N (K ) generated by h is isomorphic to Zp. Write

〈̂h〉 = hZp ∼= Zp.

Theorem (Wintenberger): Let Γ ≤ A(K ) with Γ ∼= Zp.

(a) There is L/K such that Γ ∈ C(L/K ).

(b) The extension L/K is uniquely determined by Γ up to
K -isomorphism.



Partitioning N (K )

N (K ) can be partitioned into 3 classes:

Nf (K ) = {h ∈ N (K ) : |h| <∞}

Np(K ) = {h ∈ N (K ) : 〈̂h〉 ∈ C(L/K ) with char(K ) = p}

N0(K ) = {h ∈ N (K ) : 〈̂h〉 ∈ C(L/K ) with char(K ) = 0}

Theorem (Wintenberger):

(a) N0(K ) is an open dense subset of N (K ).

(b) The closure of Nf (K ) in N (K ) is Nf (K ) ∪Np(K ).

N0(K ) can be further partitioned into subclasses:

N e
0 (K ) = {h ∈ N (K ) : 〈̂h〉 ∈ C(L/K ) with vK (p) = e}



Ramification in Zp-Subgroups of A(K )
Let Γ = 〈̂h〉 be a Zp-subgroup of A(K ). The lower
ramification breaks of Γ are given by bn = i(hpn) for n ≥ 0.

The nth upper ramification break of Γ is un = φΓ(bn). The
upper breaks can be computed recursively by

u0 = b0, un − un−1 = p−n(bn − bn−1) for n ≥ 1.

If Γ ∈ C(L/K ) then the ramification breaks of Γ are the same
as those of L/K . Hence

un = un−1 + e(K ) if un−1 > e(K )/(p − 1),

un ≥ pun−1 otherwise.

Suppose un < pun−1 for some n ≥ 1. Then char(K ) = 0,
e(K ) = un − un−1, and ui = ui−1 + e(K ) for every i ≥ n. It
follows that bi = bi−1 + e(K )pi for i ≥ n.



Subgroups of A(K )

Question: Which subgroups Γ of A(K ) (or N (K )) come
from an APF extension L/K ?

Γ must at least be closed and infinite.

Theorem (Laubie): Let Γ ≤ A(K ) be a solvable p-adic Lie
group of dimension ≥ 1. Then there is an APF extension L/K
such that Γ ∈ C(L/K ).

Question: Let Γ ≤ A(K ) be a p-adic Lie group of dimension
≥ 1. Is there L/K as above such that Γ ∈ C(L/K )?

Answer: Not necessarily. We need to be more careful.



Computing e(K )
L/K = totally ramified p-adic Lie extension.

dG = dimension of the p-adic Lie group G = Gal(L/K ).

e(K ) = vK (p) = absolute ramification index of K .

With the help of Sen’s paper “Ramification in p-adic Lie
extensions” we can compute e(K ) in terms of dG and the
ramification data of L/K :

e(K ) = lim
x→∞

dG · φL/K (x)

logp |G : Gx |
.

For a p-adic Lie group Γ ≤ A(K ) of dimension dΓ ≥ 1 define

e(Γ) = lim
x→∞

dΓ · φΓ(x)

logp |Γ : Γx |
.

Suppose Γ ∈ C(L/K ). Then G has the same ramification data
as Γ, so e(K ) = e(Γ).



An Example
Let F (X ,Y ) be a formal group law of height 2 over Fp. Then
EndFp2 (F ) is isomorphic to the maximal order B in the
quaternion algebra over Qp.

Let Γ = AutFp2 (F ) ≤ A(Fp2). Then Γ ∼= B× is a p-adic Lie
group of dimension 4.

The lower ramification breaks of Γ are bk = pk − 1 for k ≥ 0.
For k ≥ 1 we have

|Γ : Γpk−1| = p2k − p2k−2

φΓ(pk − 1) =
pk − 1

pk+2 − pk
.

Hence

e(Γ) = lim
k→∞

4 · pk−1
pk+2−pk

logp(p2k − p2k−2)
= 0!?



A Conjecture

The group Γ ≤ A(Fp2) in the preceding example does not
come from any p-adic Lie extension L/K .

Conjecture (Laubie): Let Γ ≤ A(K ) be a p-adic Lie group
such that e(Γ) > 0. Then there is a totally ramified p-adic Lie
extension L/K such that Γ ∈ C(L/K ).

Laubie showed that it is enough to prove the conjecture in the
case where Γ is a simple p-adic Lie group.



Extensions

Let L/K be APF and let M/L be a finite extension such that
M/K is Galois. Then M/K is APF, and X (M/K )/X (L/K ) is
a finite Galois extension. Denote X (M/K ) by XL/K (M).

If M1 ⊂ M2 then there is a natural X (L/K )-embedding of
XL/K (M1) into XL/K (M2).

For an infinite Galois extension E/K such that E ⊃ L define

XL/K (E ) = lim
→

XL/K (M),

where the direct limit is taken over all finite subextensions
M/L of E/L such that M/K is Galois.

Theorem (Wintenberger): Let Lsep be a separable closure
of L. Then XL/K (K sep) is a separable closure of X (L/K ).



Galois Groups

Let E/L be such that E/K is Galois. Then the action of
Gal(E/L) on XL/K (E ) induces an isomorphism

Gal(E/L) ∼= Gal(XL/K (E )/X (L/K ) ).

It follows that if K is a local field with residue field K and
L/K is a totally ramified APF extension then

Gal(Lsep/L) ∼= Gal(K ((T ))sep/K ((T )) ).

Hence Gal(Lsep/L) is independent of L or even char(L).


