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Notation
[K : Q,] = n= ef with p > 2
T/Q, = maximum unramified subextension of K/Q,
e—[K:T] f=[T: Q)
K3 /K = maximal abelian extension of K
L/K = totally ramified subextension of K@ /K
G =Gal(L/K) = C, x C,
Ok D Mk =1kOk; Ok /Mg = F, with g = pf
Ug =14+ M forc>1
vk (K*) = Z

Similar definitions apply for T and L



Ramification Breaks

For 7 € G define i(7) = v ((7 — 1)m,) — 1.
Fora>0, G,={r € G :i(r) > a} is a subgroup of G.
Say a € N is a ramification break of L/K if G, # G,11.

Since G = C, x C, we see that L/K has either 1 or 2
ramification breaks. When there is only one break we want to
replace the “missing” ramification data.

From now on we assume that L/K has a single ramification
break b > 0. Thus for every 7 € G with 7 # 1 we have
i(T) = b.



Indices of Inseparability (Fried, Heiermann)
Let 7k, 7, be uniformizers for K, L.

There are unique ¢, € p, ; U {0} such that

[o¢]
h 2
WK:Z ChT('Ler .
h=0
For 0 <j <2 set

it =min{h>0:c, #0, vp(h+p*) <j}

i =min{it + p’e-(j —j):j <j <2}

Then
1. /J* may depend on the choice of 7, but /; does not.
2.0=0h<i <.



Canonical Definition of Ij

Ford >0and 0 < < 2 set
By = O/ MP T+
Ag = (O + ME+)  pmP+d
Bale)] = Balel/ (")
Then ¢; = e + (¢”' ) satisfies ej’-#l =0.

Theorem: j; is equal to the largest d > 0 such that there
exists an Ag-algebra homomorphism s : By — Byle;] satisfying:

1. s= idBd (mod 7TL€J')
2. s#idg, (mod 7€ - (1, €)))



Relation with Ramification Data

Theorem (Fried, Heiermann): For x > 0,
.. ; .
dL/k(x) = 2 min{i; + p/x : 0 < j < 2}.

Hence if L/K has 2 distinct ramification breaks then ¢ /x
determines fy, /1, and i.

Example: Let K be an extension of Q3 of degree 8, with
e=4and f =2. Let L/K be a (G x G3)-extension such that

ax =m(l 472 +rd - — ).
Then i = if = 0, it = 39, iy = 36, and iy = if = 40.

The Hasse-Herbrand function ¢,k can be deduced from this
data:



Graph of ¢k




Truncated Exponentiation
For ¢(X) € XK[[X]], @ € K, define

o0y =3 (2)uxr wher
<a) _ o 1) 2) fa=(n=1)

Byott and Elder defined “truncated exponentiation” by

(1+ (X))l = pi ( )

n=0
Let a € Ok. Then g,(X) = (14 X)) lies in Ok[X].

For ¢ € K define cl*l = g,(c — 1).
For 7 € G define 719l = g, (7 — 1).



Computing j; in Terms of Class Field Theory
Let H = Ny k(L) be the subgroup of K* which corresponds
to L/K under CFT.

Definition: Say A < Uk is “p,_;-invariant” if
1. f is even, so that K* contains Bp_1 = Cp2—1, and
2. ull € Aforevery u e Aand a € Hp2_1-
Theorem: If f is odd set k = b. Otherwise, let k be

minimum such that H N Ug™ is p,_s-invariant. Then
io =p’b—b, ih =0, and
i, = min{p?e, p?b — pk, p*b — b}
= (p* = 1)b — max{(p* — 1)b — p’e, pk — b, 0}.



|dea of the Proof

Let the minimum polynomial for 7w, over K be
FX) =X +a X L ap X +ap.

Using the formula

1

2 p2—
_ap2 — 7TL + 317TL _'_ ttt + ap2,17TL

one can compute /1 in terms of vk(a;).

One can also obtain explicit generators for
HN UL = NL/K(UfH)

in terms of the a;. By comparing these we get the theorem.



Refined Ramification Breaks (Byott-Elder)

Write G = (7, o) and choose pg € L such that v,(pg) = b.
Then b= v, ((7 — 1)po) — vi(po) for every 7 € G with 7 # 1.
Thereis w € p,_1 \ p,_; such that

(v —1)po = —w(o —1)po (mod M2PF1).
Define

0 = yoll € O7[G]
b, = vi((© —1)po) — vi(po)-

Then b, > b does not depend on the choices of v, o, or po.



The Kummer Pairing

Assume from now on that K contains a primitive pth root of
unity Cp.

The Kummer Pairing (, ), : K* x K* — p, is defined by

1/p
(o, 8), = 20T

where 05 € Gal(K?"/K) corresponds to 3 under CFT.
(', )p is Z-bilinear and skew-symmetric, with kernel (K*)P.

For1 << % the orthogonal complement of U,"< with
respect to ( , ), is

P _j+1

(Ui = (K- U



Subgroups of K* that Correspond to L/K

Recall that H = N/« (L*) corresponds to L/K under CFT.
Let R < K* correspond to L/K under Kummer theory. Then

1. HD (K*)P; R D (K*)P
2. R/(K*)P = K*/H= C, x C,.
3. R=H+;, H=R"

pe _
-1

Set Ry = RN U.
1. R=Ry (K*)P
pfl*

2. The image Ry of Ry in Uk/Ug
Cp x Cp.

® Then

is isomorphic to



b, revisited
Let 1+ 61,1+, € Ry generate Ry. Then

pe

— b.
p—1

VK(51) = VK(52) =

Hence there is n € p, ; \ p,_; such that

82/01 =1 (mod M)

(1+6) =146, (mod M2 ).

Theorem (Byott-Elder): Let 1 < s < ﬁ be maximum
such that (14 6)" € Ry - U5, and set t = 25 —s. Then

b, = pb — max{(p> — 1)b — p®e, pt — b, 0}

Compare i; = (p?> — 1)b — max{(p® — 1)b — p?e, pk — b, 0}.



Orthogonal Complements and p2_-invariance

Theorem: Let /,j be positive integers such that i + pj > 25
and pI+J> 25 leta e Uy, B € UK, and c € Or. Then

(dd, ), = (a, 1),

Corollary: Let i, be positive integers such that i + pj > pe
and pi +j > ”e . Let Abe a p,2 ;-invariant subgroup of UK
which contams Up'. Then At N U is p,o_-invariant.

The proof of the theorem is based on Vostokov's formula for
computing («, 8)p.



Relation Between b, and i
Theorem: Assume that i; > p?b — pb. Then

1. f is even,

2. 77 E l/l/p271,
3. s is the largest integer < ﬁ such that Ry - Uj is
M2 _q-invariant.

Theorem: If i; > p>b — pb then
b, =i — p°b+ pb+ b.

Remark: In general we have p?b — pb < iy < p?b — b. If
f > 2 then all realizable second refined breaks b, can be
realized with i; = p?b — pb.

Hence i; and b, together give more information about L/K
than either number alone.



Sketch of the Proof

Let b/p < m < band m > pb — pe. Then
i >p’b—pme HOUZH s M 2_j-invariant

£ b

S (HNUZTM NUE? ~ is pyp_g-invariant

pe _m
& Ro- UL is pyeg-invariant

e
& s < _pe _ m

p—1

< b, > pb+b— pm.




Vostokov's Formula: A Power Series Field

Definition: Let T{{X}} denote the set of power series

Z a,X", with a, € T satisfying
L. nhrroo vr(a,) = o0

2. There exists m € Z such that vr(a,) > m for all n € Z.
T{{X}} certainly has the operation of addition.

The conditions on the coefficients imply that the natural
multiplication on T{{X}} is also well-defined.

These operations make T{{X}} a field.

Let Or{{X}} denote the subring of T{{X}} consisting of
power series with coefficients in Or.



Elements of Ok as Power Series

For each a € Ok choose &(X) € Or[[X]] so that &(7mk) = .

Let  : T — T be the p-Frobenius map. For o € Ok define

Also define

Then q)a’ﬁ(X) € OT[[X”



Computing the Kummer Pairing
Let s(X) = (,(X)? — 1. Then

1. s(X) € Or{{X}}*.
2. There are x(X) € O7[[X]] and A\(X) € O+ {{X}} with

1 _ pe_
00 X7 1R(X) + pA(X).

Let Res(1)) denote the coefficient of X~ in (X)) € T{X}}.
Theorem (Vostokov): Let p > 2. Then

TrT/@p(Res(dJa,ﬁ/s))

<Oé, /8>P = CP
Hence to prove (ald ), = (a, B}, it suffices to show that

Res(® i 5/5) = Res(®,, 5a/5) (mod p).



The Artin-Hasse Exponential Series

p = M@obius function; exp(X) = exponential series.

E00 =[] (1 - x9) o
plc
= exp <X+%XP+#XP2+--->
€ Z)[[X]]
By the Z-bilinearity and continuity of (, ), we can assume
a = Ey(urn%), a(X) = E,(uX®)
B = Ep(vmk), B(X) = Ep(vX")

with u,v e p, 1, g >i,and h > j.



Completing the Proof
It follows that

®, 5(X) = guvX&th1 (mod X71)
G 5(X) = g(cu)vXEHML (mod X7 1)
®, ga(X) = gu(cv)X&T"* (mod X7°1).
Using the formula for 1/s(X) we deduce that

P14 5(X) = @, 51a(X)
s(X)

= m(X) + pr(X)

for some p(X) € O7[[X]] and v(X) € Or{{X}}. Hence



