Indices of Inseparability and New Ramification Breaks

Kevin Keating
Department of Mathematics
University of Florida

May 30, 2013

Notation

$\left[K: \mathbb{Q}_{p}\right]=n=e f$ with $p>2$
$T / \mathbb{Q}_{p}=$ maximum unramified subextension of K / \mathbb{Q}_{p}
$e=[K: T] ; f=\left[T: \mathbb{Q}_{p}\right]$
$K^{a b} / K=$ maximal abelian extension of K
$L / K=$ totally ramified subextension of $K^{a b} / K$
$G=\operatorname{Gal}(L / K) \cong C_{p} \times C_{p}$
$\mathcal{O}_{K} \supset \mathcal{M}_{K}=\pi_{K} \mathcal{O}_{K} ; \mathcal{O}_{K} / \mathcal{M}_{K} \cong \mathbb{F}_{q}$ with $q=p^{f}$
$U_{K}^{c}=1+\mathcal{M}_{K}^{c}$ for $c \geq 1$
$v_{K}\left(K^{\times}\right)=\mathbb{Z}$
Similar definitions apply for T and L

Ramification Breaks

For $\tau \in G$ define $i(\tau)=v_{L}\left((\tau-1) \pi_{L}\right)-1$.
For $a \geq 0, G_{a}=\{\tau \in G: i(\tau) \geq a\}$ is a subgroup of G.
Say $a \in \mathbb{N}$ is a ramification break of L / K if $G_{a} \neq G_{a+1}$.
Since $G \cong C_{p} \times C_{p}$ we see that L / K has either 1 or 2 ramification breaks. When there is only one break we want to replace the "missing" ramification data.

From now on we assume that L / K has a single ramification break $b>0$. Thus for every $\tau \in G$ with $\tau \neq 1$ we have $i(\tau)=b$.

Indices of Inseparability (Fried, Heiermann)

Let π_{K}, π_{L} be uniformizers for K, L.
There are unique $c_{h} \in \boldsymbol{\mu}_{q-1} \cup\{0\}$ such that

$$
\pi_{K}=\sum_{h=0}^{\infty} c_{h} \pi_{L}^{h+p^{2}}
$$

For $0 \leq j \leq 2$ set

$$
\begin{aligned}
i_{j}^{*} & =\min \left\{h \geq 0: c_{h} \neq 0, v_{p}\left(h+p^{2}\right) \leq j\right\} \\
i_{j} & =\min \left\{i_{j^{\prime}}^{*}+p^{2} e \cdot\left(j^{\prime}-j\right): j \leq j^{\prime} \leq 2\right\}
\end{aligned}
$$

Then

1. i_{j}^{*} may depend on the choice of π_{L}, but i_{j} does not.
2. $0=i_{2} \leq i_{1} \leq i_{0}$.

Canonical Definition of i_{j}

For $d \geq 0$ and $0 \leq j \leq 2$ set

$$
\begin{aligned}
B_{d} & =\mathcal{O}_{L} / \mathcal{M}_{L}^{p^{2}+d} \\
A_{d} & =\left(\mathcal{O}_{K}+\mathcal{M}_{L}^{p^{2}+d}\right) / \mathcal{M}_{L}^{p^{2}+d} \\
B_{d}\left[\epsilon_{j}\right] & =B_{d}[\epsilon] /\left(\epsilon^{\rho^{j+1}}\right)
\end{aligned}
$$

Then $\epsilon_{j}=\epsilon+\left(\epsilon^{p^{j+1}}\right)$ satisfies $\epsilon_{j}^{p^{j+1}}=0$.
Theorem: i_{j} is equal to the largest $d \geq 0$ such that there exists an A_{d}-algebra homomorphism $s: B_{d} \rightarrow B_{d}\left[\epsilon_{j}\right]$ satisfying:

1. $s \equiv \operatorname{id}_{B_{d}}\left(\bmod \pi_{L} \epsilon_{j}\right)$
2. $s \not \equiv \operatorname{id}_{B_{d}}\left(\bmod \pi_{L} \epsilon_{j} \cdot\left(\pi_{L}, \epsilon_{j}\right)\right)$

Relation with Ramification Data

Theorem (Fried, Heiermann): For $x \geq 0$,

$$
\phi_{L / K}(x)=\frac{1}{p^{2}} \cdot \min \left\{i_{j}+p^{j} x: 0 \leq j \leq 2\right\} .
$$

Hence if L / K has 2 distinct ramification breaks then $\phi_{L / K}$ determines i_{0}, i_{1}, and i_{2}.

Example: Let K be an extension of \mathbb{Q}_{3} of degree 8, with $e=4$ and $f=2$. Let L / K be a $\left(C_{3} \times C_{3}\right)$-extension such that

$$
\pi_{K}=\pi_{L}^{9}\left(1+\pi_{L}^{18}+\pi_{L}^{27}-\pi_{L}^{39}-\pi_{L}^{40}+\ldots\right) .
$$

Then $i_{2}=i_{2}^{*}=0, i_{1}^{*}=39, i_{1}=36$, and $i_{0}=i_{0}^{*}=40$.
The Hasse-Herbrand function $\phi_{L / K}$ can be deduced from this data:

Graph of $\phi_{L / K}$

Truncated Exponentiation

For $\psi(X) \in X K[[X]], \alpha \in K$, define

$$
\begin{aligned}
(1+\psi(X))^{\alpha} & =\sum_{n=0}^{\infty}\binom{\alpha}{n} \psi(X)^{n}, \text { where } \\
\binom{\alpha}{n} & =\frac{\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-(n-1))}{n!} .
\end{aligned}
$$

Byott and Elder defined "truncated exponentiation" by

$$
(1+\psi(X))^{[\alpha]}=\sum_{n=0}^{p-1}\binom{\alpha}{n} \psi(X)^{n} .
$$

Let $\alpha \in \mathcal{O}_{K}$. Then $g_{\alpha}(X)=(1+X)^{[\alpha]}$ lies in $\mathcal{O}_{K}[X]$.
For $c \in K$ define $c^{[\alpha]}=g_{\alpha}(c-1)$.
For $\tau \in G$ define $\tau^{[\alpha]}=g_{\alpha}(\tau-1)$.

Computing i_{j} in Terms of Class Field Theory

Let $H=N_{L / K}\left(L^{\times}\right)$be the subgroup of K^{\times}which corresponds to L / K under CFT.

Definition: Say $A \leq U_{K}^{1}$ is " $\mu_{p^{2}-1}$-invariant" if

1. f is even, so that K^{\times}contains $\boldsymbol{\mu}_{p^{2}-1} \cong C_{p^{2}-1}$, and
2. $u^{[\alpha]} \in A$ for every $u \in A$ and $\alpha \in \boldsymbol{\mu}_{p^{2}-1}$.

Theorem: If f is odd set $k=b$. Otherwise, let k be minimum such that $H \cap U_{K}^{k+1}$ is $\boldsymbol{\mu}_{\rho^{2}-1}$-invariant. Then $i_{0}=p^{2} b-b, i_{2}=0$, and

$$
\begin{aligned}
i_{1} & =\min \left\{p^{2} e, p^{2} b-p k, p^{2} b-b\right\} \\
& =\left(p^{2}-1\right) b-\max \left\{\left(p^{2}-1\right) b-p^{2} e, p k-b, 0\right\} .
\end{aligned}
$$

Idea of the Proof

Let the minimum polynomial for π_{L} over K be

$$
f(X)=X^{p^{2}}+a_{1} X^{p^{2}-1}+\cdots+a_{p^{2}-1} X+a_{p^{2}}
$$

Using the formula

$$
-a_{p^{2}}=\pi_{L}^{p^{2}}+a_{1} \pi_{L}^{p^{2}-1}+\cdots+a_{p^{2}-1} \pi_{L}
$$

one can compute i_{1} in terms of $v_{K}\left(a_{i}\right)$.
One can also obtain explicit generators for

$$
H \cap U_{K}^{k+1}=N_{L / K}\left(U_{L}^{k+1}\right)
$$

in terms of the a_{i}. By comparing these we get the theorem.

Refined Ramification Breaks (Byott-Elder)

Write $G=\langle\gamma, \sigma\rangle$ and choose $\rho_{0} \in L$ such that $v_{L}\left(\rho_{0}\right)=b$.
Then $b=v_{L}\left((\tau-1) \rho_{0}\right)-v_{L}\left(\rho_{0}\right)$ for every $\tau \in G$ with $\tau \neq 1$.
There is $\omega \in \boldsymbol{\mu}_{q-1} \backslash \boldsymbol{\mu}_{p-1}$ such that

$$
(\gamma-1) \rho_{0} \equiv-\omega(\sigma-1) \rho_{0} \quad\left(\bmod \mathcal{M}_{L}^{2 b+1}\right)
$$

Define

$$
\begin{aligned}
\Theta & =\gamma \sigma^{[\omega]} \in \mathcal{O}_{T}[G] \\
b_{*} & =v_{L}\left((\Theta-1) \rho_{0}\right)-v_{L}\left(\rho_{0}\right)
\end{aligned}
$$

Then $b_{*}>b$ does not depend on the choices of γ, σ, or ρ_{0}.

The Kummer Pairing

Assume from now on that K contains a primitive p th root of unity ζ_{p}.

The Kummer Pairing $\langle,\rangle_{p}: K^{\times} \times K^{\times} \rightarrow \boldsymbol{\mu}_{\rho}$ is defined by

$$
\langle\alpha, \beta\rangle_{p}=\frac{\sigma_{\beta}\left(\alpha^{1 / p}\right)}{\alpha^{1 / p}},
$$

where $\sigma_{\beta} \in \mathrm{Gal}\left(K^{a b} / K\right)$ corresponds to β under CFT.
\langle,\rangle_{p} is \mathbb{Z}-bilinear and skew-symmetric, with kernel $\left(K^{\times}\right)^{p}$.
For $1 \leq i \leq \frac{p e}{p-1}$ the orthogonal complement of U_{K}^{i} with respect to \langle,\rangle_{p} is

$$
\left(U_{K}^{i}\right)^{\perp}=\left(K^{\times}\right)^{p} \cdot U_{K}^{\frac{p e}{p-1}-i+1} .
$$

Subgroups of K^{\times}that Correspond to L / K

Recall that $H=N_{L / K}\left(L^{\times}\right)$corresponds to L / K under CFT.
Let $R \leq K^{\times}$correspond to L / K under Kummer theory. Then

$$
\begin{aligned}
& \text { 1. } H \supset\left(K^{\times}\right)^{p} ; R \supset\left(K^{\times}\right)^{p} \\
& \text { 2. } R /\left(K^{\times}\right)^{p} \cong K^{\times} / H \cong C_{p} \times C_{p} \text {. } \\
& \text { 3. } R=H^{\perp} ; H=R^{\perp}
\end{aligned}
$$

Set $R_{0}=R \cap U_{K}^{\frac{p e}{p-1}-b}$. Then

1. $R=R_{0} \cdot\left(K^{\times}\right)^{p}$
2. The image \bar{R}_{0} of R_{0} in $U_{K} / U_{K}^{\frac{p e}{p-1}-b+1}$ is isomorphic to $C_{p} \times C_{p}$.

b_{*} revisited

Let $1+\delta_{1}, 1+\delta_{2} \in R_{0}$ generate \bar{R}_{0}. Then

$$
v_{K}\left(\delta_{1}\right)=v_{K}\left(\delta_{2}\right)=\frac{p e}{p-1}-b
$$

Hence there is $\eta \in \boldsymbol{\mu}_{q-1} \backslash \boldsymbol{\mu}_{p-1}$ such that

$$
\begin{aligned}
\delta_{2} / \delta_{1} & \equiv \eta \quad\left(\bmod \mathcal{M}_{K}\right) \\
\left(1+\delta_{1}\right)^{[\eta]} & \equiv 1+\delta_{2} \quad\left(\bmod \mathcal{M}_{K}^{\frac{p e}{p-1}-b+1}\right)
\end{aligned}
$$

Theorem (Byott-Elder): Let $1 \leq s \leq \frac{p e}{p-1}$ be maximum such that $\left(1+\delta_{1}\right)^{[\eta]} \in R_{0} \cdot U_{K}^{s}$, and set $t=\frac{p e}{p-1}-s$. Then

$$
b_{*}=p b-\max \left\{\left(p^{2}-1\right) b-p^{2} e, p t-b, 0\right\}
$$

Compare $i_{1}=\left(p^{2}-1\right) b-\max \left\{\left(p^{2}-1\right) b-p^{2} e, p k-b, 0\right\}$.

Orthogonal Complements and $\mu_{p^{2}-1}$-invariance

Theorem: Let i, j be positive integers such that $i+p j>\frac{p e}{p-1}$ and $p i+j>\frac{p e}{p-1}$. Let $\alpha \in U_{K}^{i}, \beta \in U_{K}^{j}$, and $c \in \mathcal{O}_{T}$. Then

$$
\left\langle\alpha^{[c]}, \beta\right\rangle_{p}=\left\langle\alpha, \beta^{[c]}\right\rangle_{p} .
$$

Corollary: Let i, j be positive integers such that $i+p j>\frac{p e}{p-1}$ and $p i+j>\frac{p e}{p-1}$. Let A be a $\mu_{p^{2}-1}$-invariant subgroup of U_{K}^{i} which contains $U_{K}^{p i}$. Then $A^{\perp} \cap U_{K}^{j}$ is $\boldsymbol{\mu}_{p^{2}-1}$-invariant.
The proof of the theorem is based on Vostokov's formula for computing $\langle\alpha, \beta\rangle_{p}$.

Relation Between b_{*} and i_{1}

Theorem: Assume that $i_{1}>p^{2} b-p b$. Then

1. f is even,
2. $\eta \in \boldsymbol{\mu}_{p^{2}-1}$,
3. s is the largest integer $\leq \frac{p e}{p-1}$ such that $R_{0} \cdot U_{K}^{s}$ is $\boldsymbol{\mu}_{p^{2}-1}$-invariant.
Theorem: If $i_{1}>p^{2} b-p b$ then

$$
b_{*}=i_{1}-p^{2} b+p b+b
$$

Remark: In general we have $p^{2} b-p b \leq i_{1} \leq p^{2} b-b$. If $f>2$ then all realizable second refined breaks b_{*} can be realized with $i_{1}=p^{2} b-p b$.

Hence i_{1} and b_{*} together give more information about L / K than either number alone.

Sketch of the Proof

Let $b / p<m<b$ and $m>p b-p e$. Then

$$
\begin{aligned}
i_{1} \geq p^{2} b-p m & \Leftrightarrow H \cap U_{K}^{m+1} \text { is } \boldsymbol{\mu}_{p^{2}-1} \text {-invariant } \\
& \Leftrightarrow\left(H \cap U_{K}^{m+1}\right)^{\perp} \cap U_{K}^{\frac{p e}{p-1}-b} \text { is } \boldsymbol{\mu}_{p^{2}-1} \text {-invariant } \\
& \Leftrightarrow R_{0} \cdot U_{K}^{\frac{p e}{p-1}-m} \text { is } \boldsymbol{\mu}_{p^{2}-1} \text {-invariant } \\
& \Leftrightarrow s \leq \frac{p e}{p-1}-m \\
& \Leftrightarrow b_{*} \geq p b+b-p m .
\end{aligned}
$$

Vostokov's Formula: A Power Series Field

Definition: Let $T\{\{X\}\}$ denote the set of power series
$\sum_{n=-\infty}^{\infty} a_{n} X^{n}$, with $a_{n} \in T$ satisfying

1. $\lim _{n \rightarrow-\infty} v_{T}\left(a_{n}\right)=\infty$
2. There exists $m \in \mathbb{Z}$ such that $v_{T}\left(a_{n}\right) \geq m$ for all $n \in \mathbb{Z}$.
$T\{\{X\}\}$ certainly has the operation of addition.
The conditions on the coefficients imply that the natural multiplication on $T\{\{X\}\}$ is also well-defined.

These operations make $T\{\{X\}\}$ a field.
Let $\mathcal{O}_{T}\{\{X\}\}$ denote the subring of $T\{\{X\}\}$ consisting of power series with coefficients in \mathcal{O}_{T}.

Elements of \mathcal{O}_{K} as Power Series

For each $\alpha \in \mathcal{O}_{K}$ choose $\tilde{\alpha}(X) \in \mathcal{O}_{T}[[X]]$ so that $\tilde{\alpha}\left(\pi_{K}\right)=\alpha$.
Let $\phi: T \rightarrow T$ be the p-Frobenius map. For $\alpha \in \mathcal{O}_{K}$ define

$$
\begin{aligned}
\tilde{\alpha}^{\Delta}(X) & =\tilde{\alpha}^{\phi}\left(X^{p}\right) \\
I(\tilde{\alpha}) & =p^{-1} \log \left(\tilde{\alpha}^{p} / \tilde{\alpha}^{\Delta}\right) .
\end{aligned}
$$

Also define

$$
\Phi_{\alpha, \beta}(X)=\frac{\tilde{\alpha}^{\prime}}{\tilde{\alpha}} \cdot l(\tilde{\beta})-\frac{\left(\tilde{\beta}^{\Delta}\right)^{\prime}}{p \tilde{\beta}^{\Delta}} \cdot l(\tilde{\alpha}) .
$$

Then $\Phi_{\alpha, \beta}(X) \in \mathcal{O}_{T}[[X]]$.

Computing the Kummer Pairing

Let $s(X)=\tilde{\zeta}_{p}(X)^{p}-1$. Then

1. $s(X) \in \mathcal{O}_{T}\{\{X\}\}^{\times}$.
2. There are $\kappa(X) \in \mathcal{O}_{T}[[X]]$ and $\lambda(X) \in \mathcal{O}_{T}\{\{X\}$ with

$$
\frac{1}{s(X)}=X^{-\frac{p e}{p-1}} \kappa(X)+p \lambda(X) .
$$

Let $\operatorname{Res}(\psi)$ denote the coefficient of X^{-1} in $\psi(X) \in T\{\{X\}\}$.
Theorem (Vostokov): Let $p>2$. Then

$$
\langle\alpha, \beta\rangle_{p}=\zeta_{p}^{\operatorname{Tr}_{T / / Q}\left(\operatorname{Res}\left(\Phi_{\alpha, \beta} / s\right)\right)} .
$$

Hence to prove $\left\langle\alpha^{[c]}, \beta\right\rangle_{p}=\left\langle\alpha, \beta^{[c]}\right\rangle_{p}$ it suffices to show that

$$
\operatorname{Res}\left(\Phi_{\alpha[c], \beta} / s\right) \equiv \operatorname{Res}\left(\Phi_{\alpha, \beta}[c] / s\right) \quad(\bmod p) .
$$

The Artin-Hasse Exponential Series

$\mu=$ Möbius function; $\exp (X)=\operatorname{exponential}$ series.

$$
\begin{aligned}
E_{p}(X) & =\prod_{p \not c}\left(1-X^{c}\right)^{-\mu(c) / c} \\
& =\exp \left(X+\frac{1}{p} X^{p}+\frac{1}{p^{2}} X^{p^{2}}+\cdots\right) \\
& \in \mathbb{Z}_{(p)}[[X]] .
\end{aligned}
$$

By the \mathbb{Z}-bilinearity and continuity of \langle,\rangle_{p} we can assume

$$
\begin{array}{ll}
\alpha=E_{p}\left(u \pi_{K}^{g}\right), & \tilde{\alpha}(X)=E_{p}\left(u X^{g}\right) \\
\beta=E_{p}\left(v \pi_{K}^{h}\right), & \tilde{\beta}(X)=E_{p}\left(v X^{h}\right)
\end{array}
$$

with $u, v \in \mu_{q-1}, g \geq i$, and $h \geq j$.

Completing the Proof

It follows that

$$
\begin{aligned}
\Phi_{\alpha, \beta}(X) & \equiv g u v X^{g+h-1} \\
\Phi_{\alpha[c], \beta}(X) & \equiv g(c u) v X^{g+h-1} \\
\Phi_{\alpha, \beta[c]}(X) & \equiv g u(c v) X^{g+h-1}
\end{aligned}\left(\bmod X^{\frac{p e}{p-1}}\right)
$$

Using the formula for $1 / s(X)$ we deduce that

$$
\frac{\Phi_{\alpha[c], \beta}(X)-\Phi_{\alpha, \beta[c]}(X)}{s(X)}=\mu(X)+p \nu(X)
$$

for some $\mu(X) \in \mathcal{O}_{T}[[X]]$ and $\nu(X) \in \mathcal{O}_{T}\{\{X\}\}$. Hence

$$
\operatorname{Res}\left(\frac{\Phi_{\alpha[c], \beta}(X)}{s(X)}\right) \equiv \operatorname{Res}\left(\frac{\Phi_{\alpha, \beta[c]}(X)}{s(X)}\right) \quad\left(\bmod \mathcal{M}_{T}\right)
$$

