Indices of Inseparability and New Ramification Breaks

> Kevin Keating Department of Mathematics University of Florida

> > May 30, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation

 $[K:\mathbb{Q}_n]=n=ef$ with p>2 T/\mathbb{Q}_p = maximum unramified subextension of K/\mathbb{Q}_p $e = [K : T]; f = [T : \mathbb{O}_{p}]$ K^{ab}/K = maximal abelian extension of K L/K = totally ramified subextension of K^{ab}/K $G = \operatorname{Gal}(L/K) \cong C_n \times C_n$ $\mathcal{O}_{\mathcal{K}} \supset \mathcal{M}_{\mathcal{K}} = \pi_{\mathcal{K}} \mathcal{O}_{\mathcal{K}}; \ \mathcal{O}_{\mathcal{K}} / \mathcal{M}_{\mathcal{K}} \cong \mathbb{F}_{q} \text{ with } q = p^{f}$ $U_{\kappa}^{c} = 1 + \mathcal{M}_{\kappa}^{c}$ for c > 1 $v_{\kappa}(K^{\times}) = \mathbb{Z}$

Similar definitions apply for T and L

Ramification Breaks

For
$$\tau \in G$$
 define $i(\tau) = v_L((\tau - 1)\pi_L) - 1$.
For $a \ge 0$, $G_a = \{\tau \in G : i(\tau) \ge a\}$ is a subgroup of G .
Say $a \in \mathbb{N}$ is a ramification break of L/K if $G_a \ne G_{a+1}$.

Since $G \cong C_p \times C_p$ we see that L/K has either 1 or 2 ramification breaks. When there is only one break we want to replace the "missing" ramification data.

From now on we assume that L/K has a single ramification break b > 0. Thus for every $\tau \in G$ with $\tau \neq 1$ we have $i(\tau) = b$.

Indices of Inseparability (Fried, Heiermann)

Let π_K , π_L be uniformizers for K, L.

There are unique $c_h \in \mu_{q-1} \cup \{0\}$ such that

$$\pi_{\mathcal{K}} = \sum_{h=0}^{\infty} c_h \pi_L^{h+p^2}.$$

For $0 \le j \le 2$ set $i_j^* = \min\{h \ge 0 : c_h \ne 0, \ v_p(h + p^2) \le j\}$ $i_j = \min\{i_{j'}^* + p^2 e \cdot (j' - j) : j \le j' \le 2\}.$

Then

1. i_j^* may depend on the choice of π_L , but i_j does not. 2. $0 = i_2 \le i_1 \le i_0$.

Canonical Definition of i_j

For $d \ge 0$ and $0 \le j \le 2$ set

$$\begin{split} B_d &= \mathcal{O}_L / \mathcal{M}_L^{p^2 + d} \\ A_d &= (\mathcal{O}_K + \mathcal{M}_L^{p^2 + d}) / \mathcal{M}_L^{p^2 + d} \\ B_d[\epsilon_j] &= B_d[\epsilon] / (\epsilon^{p^{j+1}}) \end{split}$$

Then
$$\epsilon_j = \epsilon + (\epsilon^{p^{j+1}})$$
 satisfies $\epsilon_j^{p^{j+1}} = 0$.

Theorem: i_j is equal to the largest $d \ge 0$ such that there exists an A_d -algebra homomorphism $s : B_d \to B_d[\epsilon_j]$ satisfying:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1.
$$s \equiv id_{B_d} \pmod{\pi_L \epsilon_j}$$

2. $s \not\equiv id_{B_d} \pmod{\pi_L \epsilon_j \cdot (\pi_L, \epsilon_j)}$

Relation with Ramification Data

Theorem (Fried, Heiermann): For $x \ge 0$,

$$\phi_{L/K}(x) = \frac{1}{p^2} \cdot \min\{i_j + p^j x : 0 \le j \le 2\}.$$

Hence if L/K has 2 distinct ramification breaks then $\phi_{L/K}$ determines i_0 , i_1 , and i_2 .

Example: Let K be an extension of \mathbb{Q}_3 of degree 8, with e = 4 and f = 2. Let L/K be a $(C_3 \times C_3)$ -extension such that

$$\pi_{K} = \pi_{L}^{9} (1 + \pi_{L}^{18} + \pi_{L}^{27} - \pi_{L}^{39} - \pi_{L}^{40} + \dots).$$

Then $i_2 = i_2^* = 0$, $i_1^* = 39$, $i_1 = 36$, and $i_0 = i_0^* = 40$.

The Hasse-Herbrand function $\phi_{L/K}$ can be deduced from this data:

Graph of $\phi_{L/K}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Truncated Exponentiation

For $\psi(X) \in XK[[X]]$, $\alpha \in K$, define

$$(1+\psi(X))^{lpha} = \sum_{n=0}^{\infty} {lpha \choose n} \psi(X)^n$$
, where
 ${lpha \choose n} = rac{lpha(lpha-1)(lpha-2)\dots(lpha-(n-1))}{n!}.$

Byott and Elder defined "truncated exponentiation" by

$$(1+\psi(X))^{[\alpha]}=\sum_{n=0}^{p-1} {\alpha \choose n} \psi(X)^n.$$

Let $\alpha \in \mathcal{O}_{K}$. Then $g_{\alpha}(X) = (1 + X)^{[\alpha]}$ lies in $\mathcal{O}_{K}[X]$.

For
$$c \in K$$
 define $c^{[\alpha]} = g_{\alpha}(c-1)$.
For $\tau \in G$ define $\tau^{[\alpha]} = g_{\alpha}(\tau-1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computing *i_j* in Terms of Class Field Theory

Let $H = N_{L/K}(L^{\times})$ be the subgroup of K^{\times} which corresponds to L/K under CFT.

Definition: Say $A \leq U_K^1$ is " μ_{p^2-1} -invariant" if

1. f is even, so that K^{\times} contains $\mu_{p^2-1} \cong C_{p^2-1}$, and 2. $u^{[\alpha]} \in A$ for every $u \in A$ and $\alpha \in \mu_{p^2-1}$.

Theorem: If f is odd set k = b. Otherwise, let k be minimum such that $H \cap U_{K}^{k+1}$ is $\mu_{p^{2}-1}$ -invariant. Then $i_{0} = p^{2}b - b$, $i_{2} = 0$, and

$$\begin{split} i_1 &= \min\{p^2 e, \ p^2 b - pk, \ p^2 b - b\} \\ &= (p^2 - 1)b - \max\{(p^2 - 1)b - p^2 e, \ pk - b, \ 0\} \end{split}$$

Idea of the Proof

Let the minimum polynomial for π_L over K be

$$f(X) = X^{p^2} + a_1 X^{p^2-1} + \dots + a_{p^2-1} X + a_{p^2}.$$

Using the formula

$$-a_{p^2}=\pi_L^{p^2}+a_1\pi_L^{p^2-1}+\cdots+a_{p^2-1}\pi_L$$

one can compute i_1 in terms of $v_K(a_i)$.

One can also obtain explicit generators for

$$H \cap U_K^{k+1} = \mathsf{N}_{L/K}(U_L^{k+1})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

in terms of the a_i . By comparing these we get the theorem.

Refined Ramification Breaks (Byott-Elder)

Write $G = \langle \gamma, \sigma \rangle$ and choose $\rho_0 \in L$ such that $v_L(\rho_0) = b$. Then $b = v_L((\tau - 1)\rho_0) - v_L(\rho_0)$ for every $\tau \in G$ with $\tau \neq 1$. There is $\omega \in \mu_{q-1} \setminus \mu_{p-1}$ such that $(\gamma - 1)\rho_0 \equiv -\omega(\sigma - 1)\rho_0 \pmod{\mathcal{M}_t^{2b+1}}$.

Define

$$\Theta = \gamma \sigma^{[\omega]} \in \mathcal{O}_{\mathcal{T}}[G]$$

$$b_* = v_L((\Theta - 1)\rho_0) - v_L(\rho_0).$$

Then $b_* > b$ does not depend on the choices of γ , σ , or ρ_0 .

The Kummer Pairing

Assume from now on that K contains a primitive pth root of unity ζ_p .

The Kummer Pairing $\langle \;,\;
angle_{p}: {\cal K}^{ imes} imes {\cal K}^{ imes} o {m \mu}_{p}$ is defined by

$$\langle \alpha, \beta \rangle_{\mathbf{p}} = \frac{\sigma_{\beta}(\alpha^{1/\mathbf{p}})}{\alpha^{1/\mathbf{p}}},$$

where $\sigma_{\beta} \in \text{Gal}(K^{ab}/K)$ corresponds to β under CFT. \langle , \rangle_{p} is \mathbb{Z} -bilinear and skew-symmetric, with kernel $(K^{\times})^{p}$. For $1 \leq i \leq \frac{pe}{p-1}$ the orthogonal complement of U_{K}^{i} with respect to \langle , \rangle_{p} is

$$(U_{K}^{i})^{\perp} = (K^{\times})^{p} \cdot U_{K}^{\frac{pe}{p-1}-i+1}$$

Subgroups of K^{\times} that Correspond to L/K

Recall that $H = N_{L/K}(L^{\times})$ corresponds to L/K under CFT. Let $R \leq K^{\times}$ correspond to L/K under Kummer theory. Then

1.
$$H \supset (K^{\times})^{p}$$
; $R \supset (K^{\times})^{p}$
2. $R/(K^{\times})^{p} \cong K^{\times}/H \cong C_{p} \times C_{p}$.
3. $R = H^{\perp}$; $H = R^{\perp}$
Set $R_{0} = R \cap U_{K}^{\frac{pe}{p-1}-b}$. Then
1. $R = R_{0} \cdot (K^{\times})^{p}$
2. The image \overline{R}_{0} of R_{0} in $U_{K}/U_{K}^{\frac{pe}{p-1}-b+1}$ is isomorphic to $C_{p} \times C_{p}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

b_* revisited

Let $1 + \delta_1, 1 + \delta_2 \in R_0$ generate \overline{R}_0 . Then

$$\mathsf{v}_{\mathsf{K}}(\delta_1) = \mathsf{v}_{\mathsf{K}}(\delta_2) = rac{pe}{p-1} - b.$$

Hence there is $\eta \in oldsymbol{\mu}_{q-1} \smallsetminus oldsymbol{\mu}_{p-1}$ such that

$$\delta_2/\delta_1\equiv\eta\pmod{\mathcal{M}_{\mathcal{K}}}
onumber \ (1+\delta_1)^{[\eta]}\equiv 1+\delta_2 \pmod{\mathcal{M}_{\mathcal{K}}^{rac{pe}{p-1}-b+1}}.$$

Theorem (Byott-Elder): Let $1 \le s \le \frac{pe}{p-1}$ be maximum such that $(1 + \delta_1)^{[\eta]} \in R_0 \cdot U_K^s$, and set $t = \frac{pe}{p-1} - s$. Then

$$b_* = pb - \max\{(p^2 - 1)b - p^2e, pt - b, 0\}$$

Compare $i_1 = (p^2 - 1)b - \max\{(p^2 - 1)b - p^2e, pk - b, 0\}$.

Orthogonal Complements and μ_{p^2-1} -invariance

Theorem: Let i, j be positive integers such that $i + pj > \frac{pe}{p-1}$ and $pi + j > \frac{pe}{p-1}$. Let $\alpha \in U_{K}^{i}$, $\beta \in U_{K}^{j}$, and $c \in \mathcal{O}_{T}$. Then

$$\langle \alpha^{[c]}, \beta \rangle_{p} = \langle \alpha, \beta^{[c]} \rangle_{p}.$$

Corollary: Let i, j be positive integers such that $i + pj > \frac{pe}{p-1}$ and $pi + j > \frac{pe}{p-1}$. Let A be a μ_{p^2-1} -invariant subgroup of U_K^i which contains U_K^{pi} . Then $A^{\perp} \cap U_K^j$ is μ_{p^2-1} -invariant.

The proof of the theorem is based on Vostokov's formula for computing $\langle \alpha, \beta \rangle_p$.

Relation Between b_* and i_1

Theorem: Assume that $i_1 > p^2b - pb$. Then

- 1. f is even,
- 2. $\eta \in \mu_{p^2-1}$,
- 3. s is the largest integer $\leq \frac{pe}{p-1}$ such that $R_0 \cdot U_K^s$ is μ_{p^2-1} -invariant.

Theorem: If $i_1 > p^2b - pb$ then

$$b_*=i_1-p^2b+pb+b.$$

Remark: In general we have $p^2b - pb \le i_1 \le p^2b - b$. If f > 2 then all realizable second refined breaks b_* can be realized with $i_1 = p^2b - pb$.

Hence i_1 and b_* together give more information about L/K than either number alone.

Sketch of the Proof

Let
$$b/p < m < b$$
 and $m > pb - pe$. Then
 $i_1 \ge p^2b - pm \Leftrightarrow H \cap U_K^{m+1}$ is μ_{p^2-1} -invariant
 $\Leftrightarrow (H \cap U_K^{m+1})^{\perp} \cap U_K^{\frac{pe}{p-1}-b}$ is μ_{p^2-1} -invariant
 $\Leftrightarrow R_0 \cdot U_K^{\frac{pe}{p-1}-m}$ is μ_{p^2-1} -invariant
 $\Leftrightarrow s \le \frac{pe}{p-1} - m$
 $\Leftrightarrow b_* \ge pb + b - pm$.

Vostokov's Formula: A Power Series Field

Definition: Let $T\{\{X\}\}$ denote the set of power series $\sum_{n=-\infty}^{\infty} a_n X^n$, with $a_n \in T$ satisfying

1.
$$\lim_{n\to-\infty} v_T(a_n) = \infty$$

2. There exists $m \in \mathbb{Z}$ such that $v_T(a_n) \ge m$ for all $n \in \mathbb{Z}$.

 $T{\{X\}}$ certainly has the operation of addition.

The conditions on the coefficients imply that the natural multiplication on $T\{\{X\}\}$ is also well-defined.

These operations make $T{\{\{X\}\}}$ a field.

Let $\mathcal{O}_{\mathcal{T}}\{\{X\}\}\$ denote the subring of $\mathcal{T}\{\{X\}\}\$ consisting of power series with coefficients in $\mathcal{O}_{\mathcal{T}}$.

Elements of \mathcal{O}_K as Power Series

For each $\alpha \in \mathcal{O}_{\mathcal{K}}$ choose $\tilde{\alpha}(X) \in \mathcal{O}_{\mathcal{T}}[[X]]$ so that $\tilde{\alpha}(\pi_{\mathcal{K}}) = \alpha$. Let $\phi : \mathcal{T} \to \mathcal{T}$ be the *p*-Frobenius map. For $\alpha \in \mathcal{O}_{\mathcal{K}}$ define

$$egin{aligned} & ilde{lpha}^{\Delta}(X) = ilde{lpha}^{\phi}(X^p) \ &I(ilde{lpha}) = p^{-1}\log(ilde{lpha}^p/ ilde{lpha}^{\Delta}). \end{aligned}$$

Also define

$$\Phi_{\alpha,\beta}(X) = \frac{\tilde{\alpha}'}{\tilde{\alpha}} \cdot l(\tilde{\beta}) - \frac{(\tilde{\beta}^{\Delta})'}{p\tilde{\beta}^{\Delta}} \cdot l(\tilde{\alpha}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then $\Phi_{\alpha,\beta}(X) \in \mathcal{O}_{\mathcal{T}}[[X]].$

Computing the Kummer Pairing Let $s(X) = \tilde{\zeta}_p(X)^p - 1$. Then

1.
$$s(X) \in \mathcal{O}_T\{\{X\}\}^{\times}$$
.

2. There are $\kappa(X) \in \mathcal{O}_{\mathcal{T}}[[X]]$ and $\lambda(X) \in \mathcal{O}_{\mathcal{T}}\{\!\{X\}\!\}$ with

$$\frac{1}{s(X)} = X^{-\frac{pe}{p-1}}\kappa(X) + p\lambda(X).$$

Let $\text{Res}(\psi)$ denote the coefficient of X^{-1} in $\psi(X) \in T\{\{X\}\}$. **Theorem (Vostokov):** Let p > 2. Then

$$\langle \alpha, \beta \rangle_{p} = \zeta_{p}^{\operatorname{Tr}_{T/\mathbb{Q}_{p}}(\operatorname{Res}(\Phi_{\alpha,\beta}/s))}.$$

Hence to prove $\langle \alpha^{[c]}, \beta \rangle_p = \langle \alpha, \beta^{[c]} \rangle_p$ it suffices to show that

$$\operatorname{\mathsf{Res}}(\Phi_{\alpha^{[c]},\beta}/s) \equiv \operatorname{\mathsf{Res}}(\Phi_{\alpha,\beta^{[c]}}/s) \pmod{p}.$$

The Artin-Hasse Exponential Series

 $\mu = M\ddot{o}bius$ function; exp(X) = exponential series.

$$\begin{split} \mathcal{E}_p(X) &= \prod_{p \nmid c} \left(1 - X^c \right)^{-\mu(c)/c} \\ &= \exp\left(X + \frac{1}{p} X^p + \frac{1}{p^2} X^{p^2} + \cdots \right) \\ &\in \mathbb{Z}_{(p)}[[X]]. \end{split}$$

By the \mathbb{Z} -bilinearity and continuity of \langle , \rangle_p we can assume

$$\alpha = E_p(u\pi_K^g), \quad \tilde{\alpha}(X) = E_p(uX^g)$$
$$\beta = E_p(v\pi_K^h), \quad \tilde{\beta}(X) = E_p(vX^h)$$

with $u, v \in \mu_{q-1}$, $g \ge i$, and $h \ge j$.

Completing the Proof

It follows that

$$\begin{split} \Phi_{\alpha,\beta}(X) &\equiv guvX^{g+h-1} \pmod{X^{\frac{pe}{p-1}}} \\ \Phi_{\alpha^{[c]},\beta}(X) &\equiv g(cu)vX^{g+h-1} \pmod{X^{\frac{pe}{p-1}}} \\ \Phi_{\alpha,\beta^{[c]}}(X) &\equiv gu(cv)X^{g+h-1} \pmod{X^{\frac{pe}{p-1}}}. \end{split}$$

Using the formula for 1/s(X) we deduce that

$$\frac{\Phi_{\alpha^{[c]},\beta}(X) - \Phi_{\alpha,\beta^{[c]}}(X)}{s(X)} = \mu(X) + p\nu(X)$$

for some $\mu(X) \in \mathcal{O}_{\mathcal{T}}[[X]]$ and $\nu(X) \in \mathcal{O}_{\mathcal{T}}\{\!\{X\}\!\}$. Hence

$$\mathsf{Res}\left(\frac{\Phi_{\alpha^{[c]},\beta}(X)}{s(X)}\right) \equiv \mathsf{Res}\left(\frac{\Phi_{\alpha,\beta^{[c]}}(X)}{s(X)}\right) \pmod{\mathcal{M}_{\mathcal{T}}}.$$