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Notation

[K : Qp] = n = ef with p > 2

T/Qp = maximum unramified subextension of K/Qp

e = [K : T ]; f = [T : Qp]

K ab/K = maximal abelian extension of K

L/K = totally ramified subextension of K ab/K

G = Gal(L/K ) ∼= Cp × Cp

OK ⊃MK = πKOK ; OK/MK
∼= Fq with q = pf

Uc
K = 1 +Mc

K for c ≥ 1

vK (K×) = Z

Similar definitions apply for T and L



Ramification Breaks

For τ ∈ G define i(τ) = vL((τ − 1)πL)− 1.

For a ≥ 0, Ga = {τ ∈ G : i(τ) ≥ a} is a subgroup of G .

Say a ∈ N is a ramification break of L/K if Ga 6= Ga+1.

Since G ∼= Cp × Cp we see that L/K has either 1 or 2
ramification breaks. When there is only one break we want to
replace the “missing” ramification data.

From now on we assume that L/K has a single ramification
break b > 0. Thus for every τ ∈ G with τ 6= 1 we have
i(τ) = b.



Indices of Inseparability (Fried, Heiermann)

Let πK , πL be uniformizers for K , L.

There are unique ch ∈ µq−1 ∪ {0} such that

πK =
∞∑
h=0

chπ
h+p2

L .

For 0 ≤ j ≤ 2 set

i∗j = min{h ≥ 0 : ch 6= 0, vp(h + p2) ≤ j}

ij = min{i∗j ′ + p2e · (j ′ − j) : j ≤ j ′ ≤ 2}.

Then

1. i∗j may depend on the choice of πL, but ij does not.

2. 0 = i2 ≤ i1 ≤ i0.



Canonical Definition of ij

For d ≥ 0 and 0 ≤ j ≤ 2 set

Bd = OL/Mp2+d
L

Ad = (OK +Mp2+d
L )/Mp2+d

L

Bd [εj ] = Bd [ε]/(εp
j+1

)

Then εj = ε + (εp
j+1

) satisfies εp
j+1

j = 0.

Theorem: ij is equal to the largest d ≥ 0 such that there
exists an Ad -algebra homomorphism s : Bd → Bd [εj ] satisfying:

1. s ≡ idBd
(mod πLεj)

2. s 6≡ idBd
(mod πLεj · (πL, εj))



Relation with Ramification Data

Theorem (Fried, Heiermann): For x ≥ 0,

φL/K (x) =
1

p2
·min{ij + pjx : 0 ≤ j ≤ 2}.

Hence if L/K has 2 distinct ramification breaks then φL/K

determines i0, i1, and i2.

Example: Let K be an extension of Q3 of degree 8, with
e = 4 and f = 2. Let L/K be a (C3 × C3)-extension such that

πK = π9
L(1 + π18

L + π27
L − π39

L − π40
L + . . . ).

Then i2 = i∗2 = 0, i∗1 = 39, i1 = 36, and i0 = i∗0 = 40.

The Hasse-Herbrand function φL/K can be deduced from this
data:



Graph of φL/K
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Truncated Exponentiation
For ψ(X ) ∈ XK [[X ]], α ∈ K , define

(1 + ψ(X ))α =
∞∑
n=0

(
α

n

)
ψ(X )n, where(

α

n

)
=
α(α− 1)(α− 2) . . . (α− (n − 1))

n!
.

Byott and Elder defined “truncated exponentiation” by

(1 + ψ(X ))[α] =

p−1∑
n=0

(
α

n

)
ψ(X )n.

Let α ∈ OK . Then gα(X ) = (1 + X )[α] lies in OK [X ].

For c ∈ K define c [α] = gα(c − 1).
For τ ∈ G define τ [α] = gα(τ − 1).



Computing ij in Terms of Class Field Theory

Let H = NL/K (L×) be the subgroup of K× which corresponds
to L/K under CFT.

Definition: Say A ≤ U1
K is “µp2−1-invariant” if

1. f is even, so that K× contains µp2−1
∼= Cp2−1, and

2. u[α] ∈ A for every u ∈ A and α ∈ µp2−1.

Theorem: If f is odd set k = b. Otherwise, let k be
minimum such that H ∩ Uk+1

K is µp2−1-invariant. Then
i0 = p2b − b, i2 = 0, and

i1 = min{p2e, p2b − pk , p2b − b}

= (p2 − 1)b −max{(p2 − 1)b − p2e, pk − b, 0}.



Idea of the Proof

Let the minimum polynomial for πL over K be

f (X ) = X p2

+ a1X
p2−1 + · · ·+ ap2−1X + ap2 .

Using the formula

−ap2 = πp2

L + a1π
p2−1
L + · · ·+ ap2−1πL

one can compute i1 in terms of vK (ai).

One can also obtain explicit generators for

H ∩ Uk+1
K = NL/K (Uk+1

L )

in terms of the ai . By comparing these we get the theorem.



Refined Ramification Breaks (Byott-Elder)

Write G = 〈γ, σ〉 and choose ρ0 ∈ L such that vL(ρ0) = b.

Then b = vL((τ − 1)ρ0)− vL(ρ0) for every τ ∈ G with τ 6= 1.

There is ω ∈ µq−1 r µp−1 such that

(γ − 1)ρ0 ≡ −ω(σ − 1)ρ0 (mod M2b+1
L ).

Define

Θ = γσ[ω] ∈ OT [G ]

b∗ = vL((Θ− 1)ρ0)− vL(ρ0).

Then b∗ > b does not depend on the choices of γ, σ, or ρ0.



The Kummer Pairing

Assume from now on that K contains a primitive pth root of
unity ζp.

The Kummer Pairing 〈 , 〉p : K× × K× → µp is defined by

〈α, β〉p =
σβ(α1/p)

α1/p
,

where σβ ∈ Gal(K ab/K ) corresponds to β under CFT.

〈 , 〉p is Z-bilinear and skew-symmetric, with kernel (K×)p.

For 1 ≤ i ≤ pe
p−1

the orthogonal complement of U i
K with

respect to 〈 , 〉p is

(U i
K )⊥ = (K×)p · U

pe
p−1
−i+1

K .



Subgroups of K× that Correspond to L/K

Recall that H = NL/K (L×) corresponds to L/K under CFT.

Let R ≤ K× correspond to L/K under Kummer theory. Then

1. H ⊃ (K×)p; R ⊃ (K×)p

2. R/(K×)p ∼= K×/H ∼= Cp × Cp.

3. R = H⊥; H = R⊥

Set R0 = R ∩ U
pe
p−1
−b

K . Then

1. R = R0 · (K×)p

2. The image R0 of R0 in UK/U
pe
p−1
−b+1

K is isomorphic to
Cp × Cp.



b∗ revisited

Let 1 + δ1, 1 + δ2 ∈ R0 generate R0. Then

vK (δ1) = vK (δ2) =
pe

p − 1
− b.

Hence there is η ∈ µq−1 r µp−1 such that

δ2/δ1 ≡ η (mod MK )

(1 + δ1)[η] ≡ 1 + δ2 (mod M
pe
p−1
−b+1

K ).

Theorem (Byott-Elder): Let 1 ≤ s ≤ pe
p−1

be maximum

such that (1 + δ1)[η] ∈ R0 · U s
K , and set t = pe

p−1
− s. Then

b∗ = pb −max{(p2 − 1)b − p2e, pt − b, 0}

Compare i1 = (p2 − 1)b −max{(p2 − 1)b − p2e, pk − b, 0}.



Orthogonal Complements and µp2−1-invariance

Theorem: Let i , j be positive integers such that i + pj > pe
p−1

and pi + j > pe
p−1

. Let α ∈ U i
K , β ∈ U j

K , and c ∈ OT . Then

〈α[c], β〉p = 〈α, β[c]〉p.

Corollary: Let i , j be positive integers such that i + pj > pe
p−1

and pi + j > pe
p−1

. Let A be a µp2−1-invariant subgroup of U i
K

which contains Upi
K . Then A⊥ ∩ U j

K is µp2−1-invariant.

The proof of the theorem is based on Vostokov’s formula for
computing 〈α, β〉p.



Relation Between b∗ and i1
Theorem: Assume that i1 > p2b − pb. Then

1. f is even,

2. η ∈ µp2−1,

3. s is the largest integer ≤ pe
p−1

such that R0 · U s
K is

µp2−1-invariant.

Theorem: If i1 > p2b − pb then

b∗ = i1 − p2b + pb + b.

Remark: In general we have p2b − pb ≤ i1 ≤ p2b − b. If
f > 2 then all realizable second refined breaks b∗ can be
realized with i1 = p2b − pb.

Hence i1 and b∗ together give more information about L/K
than either number alone.



Sketch of the Proof

Let b/p < m < b and m > pb − pe. Then

i1 ≥ p2b − pm⇔ H ∩ Um+1
K is µp2−1-invariant

⇔ (H ∩ Um+1
K )⊥ ∩ U

pe
p−1
−b

K is µp2−1-invariant

⇔ R0 · U
pe
p−1
−m

K is µp2−1-invariant

⇔ s ≤ pe

p − 1
−m

⇔ b∗ ≥ pb + b − pm.



Vostokov’s Formula: A Power Series Field

Definition: Let T{{X}} denote the set of power series
∞∑

n=−∞

anX
n, with an ∈ T satisfying

1. lim
n→−∞

vT (an) =∞

2. There exists m ∈ Z such that vT (an) ≥ m for all n ∈ Z.

T{{X}} certainly has the operation of addition.

The conditions on the coefficients imply that the natural
multiplication on T{{X}} is also well-defined.

These operations make T{{X}} a field.

Let OT{{X}} denote the subring of T{{X}} consisting of
power series with coefficients in OT .



Elements of OK as Power Series

For each α ∈ OK choose α̃(X ) ∈ OT [[X ]] so that α̃(πK ) = α.

Let φ : T → T be the p-Frobenius map. For α ∈ OK define

α̃∆(X ) = α̃φ(X p)

l(α̃) = p−1 log(α̃p/α̃∆).

Also define

Φα,β(X ) =
α̃′

α̃
· l(β̃)− (β̃∆)′

pβ̃∆
· l(α̃).

Then Φα,β(X ) ∈ OT [[X ]].



Computing the Kummer Pairing
Let s(X ) = ζ̃p(X )p − 1. Then

1. s(X ) ∈ OT{{X}}×.

2. There are κ(X ) ∈ OT [[X ]] and λ(X ) ∈ OT{{X}} with

1

s(X )
= X−

pe
p−1κ(X ) + pλ(X ).

Let Res(ψ) denote the coefficient of X−1 in ψ(X ) ∈ T{{X}}.

Theorem (Vostokov): Let p > 2. Then

〈α, β〉p = ζ
TrT/Qp (Res(Φα,β/s))
p .

Hence to prove 〈α[c], β〉p = 〈α, β[c]〉p it suffices to show that

Res(Φα[c],β/s) ≡ Res(Φα,β[c]/s) (mod p).



The Artin-Hasse Exponential Series

µ = Möbius function; exp(X ) = exponential series.

Ep(X ) =
∏
p-c

(1− X c)−µ(c)/c

= exp
(
X + 1

p
X p + 1

p2X
p2

+ · · ·
)

∈ Z(p)[[X ]].

By the Z-bilinearity and continuity of 〈 , 〉p we can assume

α = Ep(uπg
K ), α̃(X ) = Ep(uX g )

β = Ep(vπh
K ), β̃(X ) = Ep(vX h)

with u, v ∈ µq−1, g ≥ i , and h ≥ j .



Completing the Proof
It follows that

Φα,β(X ) ≡ guvX g+h−1 (mod X
pe
p−1 )

Φα[c],β(X ) ≡ g(cu)vX g+h−1 (mod X
pe
p−1 )

Φα,β[c](X ) ≡ gu(cv)X g+h−1 (mod X
pe
p−1 ).

Using the formula for 1/s(X ) we deduce that

Φα[c],β(X )− Φα,β[c](X )

s(X )
= µ(X ) + pν(X )

for some µ(X ) ∈ OT [[X ]] and ν(X ) ∈ OT{{X}}. Hence

Res

(
Φα[c],β(X )

s(X )

)
≡ Res

(
Φα,β[c](X )

s(X )

)
(mod MT ).


