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Let k be a finite field, characteristic p > 2.
Let R be a discrete valuation ring, char R = 0, residue field k .
Objectives.

1 Construct (finite, commutative, cocommutative p-power rank) Hopf
algebras over R.

2 Construct (finite, commutative, cocommutative p-power rank) Hopf
algebras over k [[t ]].

3 Find relationships between these constructions.
Key tool. Kisin modules (née Breuil-Kisin modules).
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Let:
W = W (k) ring of Witt vectors, Wn = W/pnW length n vectors
S = W [[u]],Sn = S/pnS = Wn[[u]]
σ : S→ S be Frobenius-semilinear map, u 7→ up

Write σ(f ) = fσ.
(pf )σ ∈ pS
We also have σ : Sn → Sn

for M an S-module, Mσ = S⊗S M with

s1 ⊗σ s2m = s1sσ2 ⊗σ m; s1, s2 ∈ S,m ∈ M

for D a complete dvr with residue field k , pick E ∈ S such that
E(0) = p and D ∼= S/ES.

char(D) = 0⇒ E is an Eisenstein polynomial.
char(D) = p ⇒ E = p

If pnM = 0 then we may assume Mσ = Sn ⊗Sn M.
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Definition
A Kisin module relative to S→ D is a triple (M, ϕ, ψ) where

M is a S-module which:
is finitely generated
is killed by a power of p
has projective dimension at most 1.

ϕ : M → Mσ and ψ : Mσ → M are S-linear maps with

ϕψ = E and ψϕ = E

Remarks.
ϕψ 6= ψϕ: ϕψ ∈ End(Mσ) and ψϕ ∈ End(M).

The S-module M does not depend on D.
Alternatively, for a given M we say (ϕ,ψ) give a Kisin structure
relative to S→ D.

Write M = (M, ϕ, ψ).
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There is an equivalence:{ Kisin modules
relative to S→ D

}
⇔

{ abelian D-Hopf algebras
of p-power rank

}
M 7→ HM

MH 7→H

M is a S-module which:
is finitely generated: required for HM to have finite rank.
is killed by a power of p: pnM = 0↔ [pn]HM = 0.
has proj. dim. M ≤ 1: projective resolution for M ↔ isogeny of
formal groups with cokernel HM .

ϕ : M → Mσ and ψ : Mσ → M are S-linear maps with
ϕψ = E and ψϕ = E : ϕ and ψ analogous to F and V for
Dieudonné modules.
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Example
Let M = Sne ∼= Sn (as S-modules).
Let ϕ(e) = E ⊗σ e, ψ(1⊗σ e) = e.

M is a S-module which:
is finitely generated: clear.
is killed by a power of p: pnM = 0.
has proj. dim. M ≤ 1: S→ S→ M is a projective resolution.

ϕ : M → Mσ and ψ : Mσ → M are S-linear maps with
ϕψ(1⊗σ e) = E ⊗σ e and ψϕ(e) = Ee: clear.
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Example
Let M = S1e = k [[u]]e (so Mσ = S1 ⊗S1 M).
D = R (characteristic zero):

Ee = uee,E ⊗σ e = ue ⊗σ e.
ϕ(e) is a factor of ue ⊗σ e, say ϕ(e) = ur f ⊗σ e, r ≤ e, f ∈ S×1 .
ψ(1⊗σ e) = ue−r f−1e.

D = k [[t ]] (characteristic p):
Ee = pe = 0,E ⊗σ e = p ⊗σ e = 1⊗σ pe = 0.
Two cases:

Case 1. ϕ(e) = 0⊗σ e, ψ(1⊗σ e) = fe, f ∈ S1.
Case 2. ϕ(e) = f ⊗σ e, ψ(1⊗σ e) = 0, f ∈ S1.
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Example
Let M = Sne = Wn[[u]]e,n > 1.
D = R :

ϕ(e) is a factor of E ⊗σ e, but E is irreducible.
Case 1. ϕ(e) = fE ⊗σ e, ψ(1⊗σ e) = f−1e, f ∈ S×

n .
Case 2. ϕ(e) = f ⊗σ e, ψ(1⊗σ e) = f−1Ee, f ∈ S×

n .

D = k [[t ]] :
Ee = pe,E ⊗σ e = p ⊗σ e.
ϕ(e) is a factor of p ⊗σ 1e.

Case 1. ϕ(e) = f ⊗σ e, ψ(1⊗σ e) = f−1p, f ∈ S×
n .

Case 2. ϕ(e) = fp ⊗σ e, ψ(1⊗σ e) = f−1, f ∈ S×
n .
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In this section, the dvr R will vary (but always be characteristic 0).
Let ER be the Eisenstein polynomial for R with E(0) = p and let
eR = e(Frac(R)/Qp).

M is a S-module
ϕ : M → Mσ and ψ : Mσ → M are S-linear maps with
ϕψ = E and ψϕ = E

Fact. In characteristic zero, ϕ is injective, hence ψ(x) = ϕ−1(Ex) and
is uniquely determined.
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Proposition
In characteristic zero, a K-module relative to S→ R can be viewed as
a pair (M, ϕ), ϕ : M → M a σ-semilinear map such that

M ∼= ⊕c
i=1Sni .

for all m ∈M,

ERm =
∑

siϕ(mi), si ∈W [[u]],mi ∈ M

By allowing R to vary, we can construct families of K-modules.
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M ∼= ⊕c
i=1Sni .

for all m ∈M,

ERm =
∑

siϕ(mi), si ∈W [[u]],mi ∈M

By allowing R to vary, we can construct families of K-modules.

Example
Let M = S1ei , ϕ(e) = ur e (or ϕ(e) = ur ⊗σ e).
For all R with eR ≥ r we have

ERe = ueR−r ur e = ueR−rϕ(e)

and (M, ϕ) is a K-module relative to S→ R.

Alan Koch (Agnes Scott College) 15 / 35



Typically, K-modules relative to a family of dvr’s are easy to construct
when M is killed by p.

Example
Let M = S1e1 ⊕S1e2 and

ϕ(e1) = ue1 + u9e2

ϕ(e2) = u7e1 + u6e2

Generally,

s1ϕ(e1) + s2ϕ(e2) = (us1 + u7s2)e1 + (u9s1 + u6s2)e2

hence

(1− u9)−1ϕ(e1)− u3(1− u9)−1ϕ(e2) = ue1

−u6(1− u9)−1ϕ(e1) + (1− u9)−1ϕ(e2) = u6e2,

so (M, ϕ) is a K-module relative to S→ R provided eR ≥ 6.
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Cyclic case – conditions simplify to:
M = Sne
ERe = sϕ(e), s ∈ Sn.

Suppose n ≥ 2.
We require a factorization of ER ∈ Sn.
But ER is irreducible in Sn, so it follows that ϕ(e) = fe or
ϕ(e) = ERfe, f ∈ S×n .
In either case, we can replace f with b = f (0) ∈W×

n .
Thus ϕ(e) = be or ϕ(e) = bEe for some Eisenstein polynomial E .
In the first case, (M, ϕ) is a K-module relative to S→ R for every R.
In the second, (M, ϕ) is a K-module relative only to S→W [[u]]/(E).
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Example

Let M = Sne1 +Sne2, ϕ(e1) = u3e1 + e2, ϕ(e2) = pe1 − e2.
Then

ϕ(e1) + ϕ(e2) = u3e1 + e2 + pe1 − e2 = (u3 + p)e1

pϕ(e1)− u3ϕ(e2) = pu3e1 + pe2 − pu3e1 + u3e2 = (u3 + p)e2

So (M, ϕ) is a K-module relative to S→W [ 3
√
−p].

E = u3 + p is the only Eisenstein polynomial obtained as Sn-linear
combinations of ϕ(e1) and ϕ(e2), n ≥ 2.
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Example

Let M = Sne1 +Sne2, ϕ(e1) = e1 + u2e2, ϕ(e2) = ue1 + e2.
Then

s1ϕ(e1) + s2ϕ(e2) = (s1 + s2u)e1 + (s1u2 + s2)e2.

Notice

(1− u3)e1 = ϕ(e1)− u2ϕ(e2)

(1− u3)e2 = −uϕ(e1) + ϕ(e2)

so given ER we have

ERe1 = ER(1− u3)−1ϕ(e1)− u2ER(1− u3)−1ϕ(e2)

ERe2 = −uER(1− u3)−1ϕ(e1) + ER(1− u3)−1ϕ(e2)

What’s the difference between these two examples?
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Rough idea.

1 Start with a Kisin module relative to S→ R.
2 Use it to construct a K-module relative to S→ R1 for R1 an

extension of R.
3 Repeat, obtaining a K-module relative to a tower of extensions.
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Write R = W [[u]]/(E), (recall E(0) = p), and let E(π) = 0, π ∈ R.
Then Eσ is an Eisenstein polynomial, Eσ(0) = p, and
R1 = W [[u]]/(Eσ) is an extension of R of degree p.
R1 = R[π1], π

p
1 = π.

More generally, we have Rm = W [[u]]/(Eσm
) = R[ pm√

π].
Write E = wue + puF + p,w ∈W ,F ∈ S,deg F < e − 1.
Then

lim
m→∞

Eσm
= wσm

upme − pupmFσm
+ pσ

m
= p

in the u-adic topology, so

W [[u]]/(Eσm
)→W [[u]]/p = k [[u]].
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Let (M, ϕ) be a K-module relative to S→ R.
Let e1, . . . ,ec generate M, and let ϕ(ei) =

∑c
j=1 fjej .

For all i we can write

Eei =
c∑

j=1

si,jϕ(ej), si,j ∈ S.

Define ϕ1 : M → M to be the semilinear map ϕ1(ei) =
∑c

j=1 f σj ej . Then

Eσei =
n∑

j=1

sσi,jϕ1(ej)

and so (M, ϕ1) is a K-module relative to S→ R1.
This is, or is close to, base change.
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Example
Let M = S1e, ϕ(e) = 1⊗σ e using char-free def. of K-mod.

ϕ(e) = 1⊗σ e, ψ(1⊗σ e) = uee gives S→ R
ϕ1(e) = 1⊗σ e, ψ1(1⊗σ e) = upee gives S→ R1

ϕ2(e) = 1⊗σ e, ψ2(1⊗σ e) = up2ee gives S→ R2

...

ϕm(e) = 1⊗σ e, ψm(1⊗σ e) = upmee gives S→ Rm

Let m→∞. Then

ϕ∞(e) = 1⊗σ e, ψ∞(1⊗σ e) = 0

gives a K-module structure relative to S→ k [[t ]].
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Example
Let M = S1e, ϕ(e) = ue ⊗σ e.

ϕ(e) = ue ⊗σ e, ψ(1⊗σ e) = e gives S→ R
ϕ1(e) = upe ⊗σ e, ψ1(1⊗σ e) = e gives S→ R1

ϕ2(e) = up2e ⊗σ e, ψ2(1⊗σ e) = e gives S→ R2

...

ϕm(e) = upme ⊗σ e, ψm(1⊗σ e) = e gives S→ Rm

Let m→∞. Then

ϕ∞(e) = 0⊗σ e = 0, ψ∞(1⊗σ e) = e

gives a K-module structure relative to S→ k [[t ]].
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Example
Let M = S1e, ϕ(e) = ur ⊗σ e,0 < r < e. Then:

ϕ(e) = ur ⊗σ e, ψ(1⊗σ e) = ue−r e gives S→ R

ϕ1(e) = upr ⊗σ e, ψ1(1⊗σ e) = up(e−r)e gives S→ R1

ϕ2(e) = up2r ⊗σ e, ψ2(1⊗σ e) = up2(e−r)e gives S→ R2

...

ϕm(e) = upmr ⊗σ e, ψm(1⊗σ e) = upm(e−r)e gives S→ Rm

Let m→∞. Then

ϕ∞(e) = 0⊗σ e = 0, ψ∞(1⊗σ e) = 0

gives a (trivial) K-module structure relative to S→ k [[t ]].
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Example
Let M = Sne,n ≥ 2. Either:

ϕ(e) = fE ⊗σ e, ψ(1⊗σ e) = f−1e gives S→ R

ϕm(e) = f σ
m

Eσm ⊗σ e, ψm(1⊗σ e) = (f−1)σ
m

e gives S→ R1

ϕ∞(e) = pb ⊗σ e, ψ∞(1⊗σ e) = b−1 if f (0) = b ∈Wn(Fp).
Or:

ϕ(e) = f ⊗σ e, ψ(1⊗σ e) = f−1Ee gives S→ R

ϕm(e) = f σ
m ⊗σ e, ψ1(1⊗σ e) = (f−1)σ

m
Eσm

e gives S→ R1

ϕ∞(e) = b ⊗σ e, ψ∞(1⊗σ e) = pb−1 if f (0) = b ∈Wn(Fp).
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ϕ(e) = fE ⊗σ e, ψ(1⊗σ e) = f−1e gives S→ R

Taking the limit doesn’t work well if b 6∈Wn(Fp),b = f (0).
But, ϕ∞(e) = b ⊗σ e, ψ∞(1⊗σ e) = pb−1 if b 6∈Wn(Fp) still works:

ψ∞ϕ∞(e) = ψ∞(b ⊗σ e) = bpb−1e = pe

ϕ∞ψ∞(1⊗σ e) = ϕ∞(pb−1) = pb−1b ⊗σ e = p ⊗σ 1e
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Generally, suppose M is generated by {e1, . . . ,ec} and

ϕ(ei) =
c∑

j=1

fi,j ⊗σ ej , ψ(1⊗σ ej) =
c∑

i=1

gj,iei , fi,j ,gj,i ∈ S

is a K-module structure on M relative to S→ R. Then

E ⊗σ ej = ϕψ(1⊗σ ej) =
c∑

j=1

c∑
i=1

fi,jgj,i ⊗σ ej

1⊗σ pei =
c∑

j=1

c∑
i=1

fi,j(0)gj,i(0)⊗σ ej

and we get a K-module structure on M relative to S→ k [[t ]]:

ϕ∞(ei) =
c∑

j=1

fi,j(0)⊗σ ej ,

ψ∞(1⊗σ ej) =
c∑

i=1

gj,i(0)ei , fi,j(0),gj,i(0) ∈W .
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Example (Last one.)

Let R = W [ 3
√
−p]. Then E = u3 + p. Let M = Sne1 +Sne2 and

ϕ(e1) = u3 ⊗σ e1 + 1⊗σ e2 ψ(1⊗σ e1) = e1 + e2
ϕ(e2) = p ⊗σ e1 − 1⊗σ e2 ψ(1⊗σ e2) = pe1 − u3e2

(Recall (ψ(x) = ϕ−1((u3 + p)x)).)
Then
ϕ∞(e1) = 1⊗σ e2 ψ∞(1⊗σ e1) = e1 + e2
ϕ∞(e2) = p ⊗σ e1 − 1⊗σ e2 ψ∞(1⊗σ e2) = pe1
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We have a map{ Kisin modules
relative to S→ R

}
⇒

{ Kisin modules
relative to S→ k [[t ]]

}
(M, ϕ, ψ) 7→ (M, ϕ∞, ψ∞)

ϕ∞(x) = ε0(ϕ(x)))
ψ∞(y) = ε0(ψ(y)))

where ε0 : S→W is evaluation at u = 0.
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We have a map{ Kisin modules
relative to S→ R

}
⇒

{ Kisin modules
relative to S→ k [[t ]]

}
(M, ϕ, ψ) 7→ (M, ϕ∞, ψ∞)

ϕ∞(x) = ε0(ϕ(x)))
ψ∞(x) = ε0(ψ(x)))

where ε0 : S→W is evaluation at u = 0.
Issues:

1 I doubt this map is onto.
2 I know this map is not one-to-one: M = Sne, ϕ(e) = u ⊗σ e and

M = Sne, ϕ(e) = u2 ⊗σ e both give
M = Sne, ϕ∞(e) = 0, ψ∞(e) = pe.

3 This seems unnatural when the whole tower does not lift.
4 Hard to determine the corresponding Hopf algebras, particularly

over k [[t ]].
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Example (Very Last Example)

Let Cp = 〈τ〉. Let M = S1e, ϕ(e) = ue−(p−1) ⊗σ e, ψ(1⊗σ e) = up−1e.
Then HM = R[ τ−1

π ] ⊂ KCp.

Let M1 = S1e, ϕ1(e) = up(e−(p−1)) ⊗σ e, ψ1(1⊗σ e) = up(p−1)e. Then
HM1 = R1[

τ−1
π

p
1
] = R1[

τ−1
π ] ⊂ K1Cp.

Generally,

HMm = Rm[
τ − 1

πpm

m
] = Rm[

τ − 1
π

] ⊂ KmCp.

Let m→∞. Then

ϕ∞(e) = 0⊗σ e = 0, ψ∞(1⊗σ e) = 0 = 0.

What’s HM∞?
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Thank you.
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