Kisin modules in all characteristics (except 2)

Alan Koch

Agnes Scott College
May 27, 2013

Outline

(9) Overview

2 Kisin Modules
(3) Cyclic Examples
(4) Characteristic 0
(5) From Characteristic 0 to Characteristic p
(6) Summary

Let k be a finite field, characteristic $p>2$.
Let R be a discrete valuation ring, char $R=0$, residue field k. Objectives.
(1) Construct (finite, commutative, cocommutative p-power rank) Hopf algebras over R.
(2) Construct (finite, commutative, cocommutative p-power rank) Hopf algebras over $k[[t]]$.
(3) Find relationships between these constructions.

Key tool. Kisin modules (née Breuil-Kisin modules).

Outline

(4) Overview

(2) Kisin Modules
(3) Cyclic Examples
(4) Characteristic 0

(5) From Characteristic 0 to Characteristic p

(6) Summary

Let:

- $W=W(k)$ ring of Witt vectors, $W_{n}=W / p^{n} W$ length n vectors
- $\mathfrak{S}=W[[u]], \mathfrak{S}_{n}=\mathfrak{S} / p^{n} \mathfrak{S}=W_{n}[[u]]$
- $\sigma: \mathfrak{S} \rightarrow \mathfrak{S}$ be Frobenius-semilinear map, $u \mapsto u^{p}$
- Write $\sigma(f)=f^{\sigma}$.
- $(p f)^{\sigma} \in p \mathfrak{S}$
- We also have $\sigma: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}$
- for M an \mathfrak{S}-module, $M^{\sigma}=\mathfrak{S} \otimes_{\mathfrak{S}} M$ with

$$
s_{1} \otimes_{\sigma} s_{2} m=s_{1} s_{2}^{\sigma} \otimes_{\sigma} m ; s_{1}, s_{2} \in \mathfrak{S}, m \in M
$$

- for D a complete dvr with residue field k, pick $E \in \mathfrak{S}$ such that $E(0)=p$ and $D \cong \mathfrak{S} / E \subseteq$.
- $\operatorname{char}(D)=0 \Rightarrow E$ is an Eisenstein polynomial.
- $\operatorname{char}(D)=p \Rightarrow E=p$

If $p^{n} M=0$ then we may assume $M^{\sigma}=\mathfrak{S}_{n} \otimes_{\mathfrak{S}_{n}} M$.

Definition

A Kisin module relative to $\mathfrak{S} \rightarrow D$ is a triple (M, φ, ψ) where

- M is a \mathfrak{S}-module which:
- is finitely generated
- is killed by a power of p
- has projective dimension at most 1.
- $\varphi: M \rightarrow M^{\sigma}$ and $\psi: M^{\sigma} \rightarrow M$ are \mathfrak{S}-linear maps with

$$
\varphi \psi=E \text { and } \psi \varphi=E
$$

Remarks.

- $\varphi \psi \neq \psi \varphi: \varphi \psi \in \operatorname{End}\left(M^{\sigma}\right)$ and $\psi \varphi \in \operatorname{End}(M)$.
- The \mathfrak{S}-module M does not depend on D.
- Alternatively, for a given M we say (φ, ψ) give a Kisin structure relative to $\mathfrak{S} \rightarrow D$.
- Write $M=(M, \varphi, \psi)$.

There is an equivalence:

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Kisin modules } \\
\text { relative to } \mathfrak{S} \rightarrow D
\end{array}\right\} & \Leftrightarrow\left\{\begin{array}{c}
\text { abelian } D \text {-Hopf algebras } \\
\text { of } p \text {-power rank }
\end{array}\right\} \\
M & \mapsto H_{M} \\
M_{H} & \leftrightarrow H
\end{aligned}
$$

- M is a \mathfrak{S}-module which:
- is finitely generated: required for H_{M} to have finite rank.
- is killed by a power of $p: p^{n} M=0 \leftrightarrow\left[p^{n}\right] H_{M}=0$.
- has proj. dim. $M \leq 1$: projective resolution for $M \leftrightarrow$ isogeny of formal groups with cokernel H_{M}.
- $\varphi: M \rightarrow M^{\sigma}$ and $\psi: M^{\sigma} \rightarrow M$ are \mathfrak{S}-linear maps with $\varphi \psi=E$ and $\psi \varphi=E: \varphi$ and ψ analogous to F and V for Dieudonné modules.

Outline

(9) Overview

(2) Kisin Modules
(3) Cyclic Examples
(4) Characteristic 0

(5) From Characteristic 0 to Characteristic p

(6) Summary

Example

Let $M=\mathfrak{S}_{n} \mathbf{e} \cong \mathfrak{S}_{n}$ (as \mathfrak{S}-modules).
Let $\varphi(\mathbf{e})=E \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=\mathbf{e}$.

- M is a \mathfrak{S}-module which:
- is finitely generated: clear.
- is killed by a power of $p: p^{n} M=0$.
- has proj. dim. $M \leq 1: \mathfrak{S} \rightarrow \mathfrak{S} \rightarrow M$ is a projective resolution.
- $\varphi: M \rightarrow M^{\sigma}$ and $\psi: M^{\sigma} \rightarrow M$ are \mathfrak{S}-linear maps with
$\varphi \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=E \otimes_{\sigma} \mathbf{e}$ and $\psi \varphi(\mathbf{e})=E \mathbf{e}$: clear.

Example

Let $M=\mathfrak{S}_{1} \mathbf{e}=k[[u]] \mathbf{e}\left(\right.$ so $\left.M^{\sigma}=\mathfrak{S}_{1} \otimes_{\mathfrak{S}_{1}} M\right)$.
$D=R$ (characteristic zero):

- $E \mathbf{e}=u^{e} \mathbf{e}, E \otimes_{\sigma} \mathbf{e}=u^{e} \otimes_{\sigma} \mathbf{e}$.
- $\varphi(\mathbf{e})$ is a factor of $u^{e} \otimes_{\sigma} \mathbf{e}$, say $\varphi(\mathbf{e})=u^{r} f \otimes_{\sigma} \mathbf{e}, r \leq e, f \in \mathfrak{S}_{1}^{\times}$.
- $\psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{e-r} f^{-1} \mathbf{e}$.
$D=k[[t]]$ (characteristic p):
- $E \mathbf{e}=p \mathbf{e}=0, E \otimes_{\sigma} \mathbf{e}=p \otimes_{\sigma} \mathbf{e}=1 \otimes_{\sigma} p \mathbf{e}=0$.
- Two cases:
- Case 1. $\varphi(\mathbf{e})=0 \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=f \mathbf{e}, f \in \mathfrak{S}_{1}$.
- Case 2. $\varphi(\mathbf{e})=f \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=0, f \in \mathfrak{S}_{1}$.

Example

Let $M=\mathfrak{S}_{n} \mathbf{e}=W_{n}[[u]] \mathbf{e}, n>1$.
$D=R$:

- $\varphi(\mathbf{e})$ is a factor of $E \otimes_{\sigma} \mathbf{e}$, but E is irreducible.
- Case 1. $\varphi(\mathbf{e})=f E \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=f^{-1} \mathbf{e}, f \in \mathfrak{S}_{n}^{\times}$.
- Case 2. $\varphi(\mathbf{e})=f \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=f^{-1} E \mathbf{e}, f \in \mathfrak{S}_{n}^{\times}$.
$D=k[[t]]$:
- $E \mathbf{e}=p \mathbf{e}, E \otimes_{\sigma} \mathbf{e}=p \otimes_{\sigma} \mathbf{e}$.
- $\varphi(\mathbf{e})$ is a factor of $p \otimes_{\sigma} 1 \mathbf{e}$.
- Case 1. $\varphi(\mathbf{e})=f \otimes_{\sigma} \mathbf{e} \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=f^{-1} p, f \in \mathfrak{S}_{n}^{\times}$.
- Case 2. $\varphi(\mathbf{e})=f p \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=f^{-1}, f \in \mathfrak{S}_{n}^{\times}$.

Outline

(9) Overview

(2) Kisin Modules
(3) Cyclic Examples
(4) Characteristic 0
(5) From Characteristic 0 to Characteristic p
(6) Summary

In this section, the dvr R will vary (but always be characteristic 0). Let E_{R} be the Eisenstein polynomial for R with $E(0)=p$ and let $e_{R}=e\left(\operatorname{Frac}(R) / \mathbb{Q}_{p}\right)$.

- M is a \mathfrak{S}-module
- $\varphi: M \rightarrow M^{\sigma}$ and $\psi: M^{\sigma} \rightarrow M$ are \mathfrak{S}-linear maps with $\varphi \psi=E$ and $\psi \varphi=E$
Fact. In characteristic zero, φ is injective, hence $\psi(x)=\varphi^{-1}(E x)$ and is uniquely determined.

Proposition

In characteristic zero, a K-module relative to $\mathfrak{S} \rightarrow R$ can be viewed as a pair $(M, \varphi), \varphi: M \rightarrow M$ a σ-semilinear map such that

- $M \cong \oplus_{i=1}^{c} S_{n_{i}}$.
- for all $m \in \mathfrak{N}$,

$$
E_{R} m=\sum s_{i} \varphi\left(m_{i}\right), s_{i} \in W[[u]], m_{i} \in M
$$

By allowing R to vary, we can construct families of K-modules.

- $M \cong \oplus_{i=1}^{c} \mathfrak{S}_{n_{i}}$.
- for all $m \in \mathfrak{M}$,

$$
E_{R} m=\sum s_{i} \varphi\left(m_{i}\right), s_{i} \in W[[u]], m_{i} \in \mathfrak{M}
$$

By allowing R to vary, we can construct families of K -modules.

Example

Let $M=\mathfrak{S}_{1} \mathbf{e}_{i}, \varphi(\mathbf{e})=u^{r} \mathbf{e}\left(\right.$ or $\left.\varphi(\mathbf{e})=u^{r} \otimes_{\sigma} \mathbf{e}\right)$.
For all R with $e_{R} \geq r$ we have

$$
E_{R} \mathbf{e}=u^{e_{R}-r} u^{r} \mathbf{e}=u^{e_{R}-r} \varphi(\mathbf{e})
$$

and (M, φ) is a K -module relative to $\mathfrak{S} \rightarrow R$.

Typically, K-modules relative to a family of dvr's are easy to construct when M is killed by p.

Example

Let $M=\mathfrak{S}_{1} \mathbf{e}_{1} \oplus \mathfrak{S}_{1} \mathbf{e}_{2}$ and

$$
\begin{aligned}
& \varphi\left(\mathbf{e}_{1}\right)=u \mathbf{e}_{1}+u^{9} \mathbf{e}_{2} \\
& \varphi\left(\mathbf{e}_{2}\right)=u^{7} \mathbf{e}_{1}+u^{6} \mathbf{e}_{2}
\end{aligned}
$$

Generally,

$$
s_{1} \varphi\left(\mathbf{e}_{1}\right)+s_{2} \varphi\left(\mathbf{e}_{2}\right)=\left(u s_{1}+u^{7} s_{2}\right) \mathbf{e}_{1}+\left(u^{9} s_{1}+u^{6} s_{2}\right) \mathbf{e}_{2}
$$

hence

$$
\begin{aligned}
\left(1-u^{9}\right)^{-1} \varphi\left(\mathbf{e}_{1}\right)-u^{3}\left(1-u^{9}\right)^{-1} \varphi\left(\mathbf{e}_{2}\right) & =u \mathbf{e}_{1} \\
-u^{6}\left(1-u^{9}\right)^{-1} \varphi\left(\mathbf{e}_{1}\right)+\left(1-u^{9}\right)^{-1} \varphi\left(\mathbf{e}_{2}\right) & =u^{6} \mathbf{e}_{2}
\end{aligned}
$$

so (M, φ) is a K-module relative to $\mathfrak{S} \rightarrow R$ provided $e_{R} \geq 6$.

Cyclic case - conditions simplify to:

- $M=S_{n} \mathrm{e}$
- $E_{R} \mathbf{e}=s \varphi(\mathbf{e}), s \in \mathbb{S}_{n}$.

Suppose $n \geq 2$.
We require a factorization of $E_{R} \in \mathfrak{S}_{n}$.
But E_{R} is irreducible in \mathfrak{S}_{n}, so it follows that $\varphi(\mathbf{e})=f \mathbf{e}$ or
$\varphi(\mathbf{e})=E_{R} f \mathbf{e}, f \in \mathfrak{S}_{n}^{\times}$.
In either case, we can replace f with $b=f(0) \in W_{n}^{\times}$.
Thus $\varphi(\mathbf{e})=b \mathbf{e}$ or $\varphi(\mathbf{e})=b E \mathbf{e}$ for some Eisenstein polynomial E. In the first case, (M, φ) is a K-module relative to $\mathfrak{S} \rightarrow R$ for every R. In the second, (M, φ) is a K-module relative only to $\mathfrak{S} \rightarrow W[[u]] /(E)$.

Example

Let $M=\mathfrak{S}_{n} \mathbf{e}_{1}+\mathfrak{S}_{n} \mathbf{e}_{2}, \varphi\left(\mathbf{e}_{1}\right)=u^{3} \mathbf{e}_{1}+\mathbf{e}_{2}, \varphi\left(\mathbf{e}_{2}\right)=p \mathbf{e}_{1}-\mathbf{e}_{2}$.
Then

$$
\begin{aligned}
\varphi\left(\mathbf{e}_{1}\right)+\varphi\left(\mathbf{e}_{2}\right) & =u^{3} \mathbf{e}_{1}+\mathbf{e}_{2}+p \mathbf{e}_{1}-\mathbf{e}_{2}=\left(u^{3}+p\right) \mathbf{e}_{1} \\
p \varphi\left(\mathbf{e}_{1}\right)-u^{3} \varphi\left(\mathbf{e}_{2}\right) & =p u^{3} \mathbf{e}_{1}+p \mathbf{e}_{2}-p u^{3} \mathbf{e}_{1}+u^{3} \mathbf{e}_{2}=\left(u^{3}+p\right) \mathbf{e}_{2}
\end{aligned}
$$

So (M, φ) is a K-module relative to $\mathfrak{S} \rightarrow W[\sqrt[3]{-p}]$.
$E=u^{3}+p$ is the only Eisenstein polynomial obtained as \mathfrak{S}_{n}-linear combinations of $\varphi\left(\mathbf{e}_{1}\right)$ and $\varphi\left(\mathbf{e}_{2}\right), n \geq 2$.

Example

Let $M=\mathfrak{S}_{n} \mathbf{e}_{1}+\mathfrak{S}_{n} \mathbf{e}_{2}, \varphi\left(\mathbf{e}_{1}\right)=\mathbf{e}_{1}+u^{2} \mathbf{e}_{2}, \varphi\left(\mathbf{e}_{2}\right)=u \mathbf{e}_{1}+\mathbf{e}_{2}$. Then

$$
s_{1} \varphi\left(\mathbf{e}_{1}\right)+s_{2} \varphi\left(\mathbf{e}_{2}\right)=\left(s_{1}+s_{2} u\right) \mathbf{e}_{1}+\left(s_{1} u^{2}+s_{2}\right) \mathbf{e}_{2}
$$

Notice

$$
\begin{aligned}
& \left(1-u^{3}\right) \mathbf{e}_{1}=\varphi\left(\mathbf{e}_{1}\right)-u^{2} \varphi\left(\mathbf{e}_{2}\right) \\
& \left(1-u^{3}\right) \mathbf{e}_{2}=-u \varphi\left(\mathbf{e}_{1}\right)+\varphi\left(\mathbf{e}_{2}\right)
\end{aligned}
$$

so given E_{R} we have

$$
\begin{aligned}
& E_{R} \mathbf{e}_{1}=E_{R}\left(1-u^{3}\right)^{-1} \varphi\left(\mathbf{e}_{1}\right)-u^{2} E_{R}\left(1-u^{3}\right)^{-1} \varphi\left(\mathbf{e}_{2}\right) \\
& E_{R} \mathbf{e}_{2}=-u E_{R}\left(1-u^{3}\right)^{-1} \varphi\left(\mathbf{e}_{1}\right)+E_{R}\left(1-u^{3}\right)^{-1} \varphi\left(\mathbf{e}_{2}\right)
\end{aligned}
$$

What's the difference between these two examples?

Outline

(9) Overview

(2) Kisin Modules
(3) Cyclic Examples
(4) Characteristic 0
(5) From Characteristic 0 to Characteristic p
(6) Summary

Rough idea.
(1) Start with a Kisin module relative to $\mathfrak{S} \rightarrow R$.
(2) Use it to construct a K-module relative to $\mathfrak{S} \rightarrow R_{1}$ for R_{1} an extension of R.
(3) Repeat, obtaining a K-module relative to a tower of extensions.

Write $R=W[[u]] /(E)$, (recall $E(0)=p$), and let $E(\pi)=0, \pi \in R$.
Then E^{σ} is an Eisenstein polynomial, $E^{\sigma}(0)=p$, and
$R_{1}=W[[u]] /\left(E^{\sigma}\right)$ is an extension of R of degree p.
$R_{1}=R\left[\pi_{1}\right], \pi_{1}^{p}=\pi$.
More generally, we have $R_{m}=W[[u]] /\left(E^{\sigma^{m}}\right)=R[\sqrt[\rho^{m}]{\pi}]$.
Write $E=w u^{e}+p u F+p, w \in W, F \in \mathfrak{S}, \operatorname{deg} F<e-1$.
Then

$$
\lim _{m \rightarrow \infty} E^{\sigma^{m}}=w^{\sigma^{m}} u^{p^{m} e}-p u^{p m} F^{\sigma^{m}}+p^{\sigma^{m}}=p
$$

in the u-adic topology, so

$$
W[[u]] /\left(E^{\sigma^{m}}\right) \rightarrow W[[u]] / p=k[[u]] .
$$

Let (M, φ) be a K-module relative to $\mathfrak{S} \rightarrow R$.
Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{c}$ generate M, and let $\varphi\left(\mathbf{e}_{i}\right)=\sum_{j=1}^{c} f_{j} \mathbf{e}_{j}$.
For all i we can write

$$
E \mathbf{e}_{i}=\sum_{j=1}^{c} s_{i, j} \varphi\left(\mathbf{e}_{j}\right), s_{i, j} \in \mathfrak{S}
$$

Define $\varphi_{1}: M \rightarrow M$ to be the semilinear map $\varphi_{1}\left(\mathbf{e}_{i}\right)=\sum_{j=1}^{c} f_{j}^{\sigma} \mathbf{e}_{j}$. Then

$$
E^{\sigma} \mathbf{e}_{i}=\sum_{j=1}^{n} s_{i, j}^{\sigma} \varphi_{1}\left(\mathbf{e}_{j}\right)
$$

and so $\left(M, \varphi_{1}\right)$ is a K-module relative to $\mathfrak{S} \rightarrow R_{1}$. This is, or is close to, base change.

Example

Let $M=\mathfrak{S}_{1} \mathbf{e}, \varphi(\mathbf{e})=1 \otimes_{\sigma} \mathbf{e}$ using char-free def. of K-mod.

$$
\begin{aligned}
\varphi(\mathbf{e})=1 \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right) & =u^{e} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R \\
\varphi_{1}(\mathbf{e})=1 \otimes_{\sigma} \mathbf{e}, \psi_{1}\left(1 \otimes_{\sigma} \mathbf{e}\right) & =u^{p e} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{1} \\
\varphi_{2}(\mathbf{e})=1 \otimes_{\sigma} \mathbf{e}, \psi_{2}\left(1 \otimes_{\sigma} \mathbf{e}\right) & =u^{p^{2} e} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{2}
\end{aligned}
$$

$$
\varphi_{m}(\mathbf{e})=1 \otimes_{\sigma} \mathbf{e}, \psi_{m}\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{p^{m} e} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{m}
$$

Let $m \rightarrow \infty$. Then

$$
\varphi_{\infty}(\mathbf{e})=1 \otimes_{\sigma} \mathbf{e}, \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right)=0
$$

gives a K-module structure relative to $\mathfrak{S} \rightarrow k[[t]]$.

Example

Let $M=\mathfrak{S}_{1} \mathbf{e}, \varphi(\mathbf{e})=u^{e} \otimes_{\sigma} \mathbf{e}$.

$$
\begin{aligned}
& \varphi(\mathbf{e})=u^{e} \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=\mathbf{e} \text { gives } \mathfrak{S} \rightarrow R \\
& \varphi_{1}(\mathbf{e})=u^{p e} \otimes_{\sigma} \mathbf{e}, \psi_{1}\left(1 \otimes_{\sigma} \mathbf{e}\right)=\mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{1} \\
& \varphi_{2}(\mathbf{e})=u^{p^{2} e} \otimes_{\sigma} \mathbf{e}, \psi_{2}\left(1 \otimes_{\sigma} \mathbf{e}\right)=\mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{2} \\
& \vdots \\
& \varphi_{m}(\mathbf{e})=u^{p^{m} e} \otimes_{\sigma} \mathbf{e}, \psi_{m}\left(1 \otimes_{\sigma} \mathbf{e}\right)=\mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{m}
\end{aligned}
$$

Let $m \rightarrow \infty$. Then

$$
\varphi_{\infty}(\mathbf{e})=0 \otimes_{\sigma} \mathbf{e}=0, \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right)=\mathbf{e}
$$

gives a K-module structure relative to $\mathfrak{S} \rightarrow k[[t]]$.

Example

Let $M=\mathfrak{S}_{1} \mathbf{e}, \varphi(\mathbf{e})=u^{r} \otimes_{\sigma} \mathbf{e}, 0<r<\boldsymbol{e}$. Then:

$$
\begin{aligned}
& \varphi(\mathbf{e})=u^{r} \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{e-r} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R \\
& \varphi_{1}(\mathbf{e})=u^{p r} \otimes_{\sigma} \mathbf{e}, \psi_{1}\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{p(e-r)} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{1} \\
& \varphi_{2}(\mathbf{e})=u^{p^{2} r} \otimes_{\sigma} \mathbf{e}, \psi_{2}\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{p^{2}(e-r)} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{2} \\
& \vdots \\
& \varphi_{m}(\mathbf{e})=u^{p^{m} r} \otimes_{\sigma} \mathbf{e}, \psi_{m}\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{p^{m}(e-r)} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{m}
\end{aligned}
$$

Let $m \rightarrow \infty$. Then

$$
\varphi_{\infty}(\mathbf{e})=0 \otimes_{\sigma} \mathbf{e}=0, \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right)=0
$$

gives a (trivial) K-module structure relative to $\mathfrak{S} \rightarrow k[[t]]$.

Example

Let $M=\mathfrak{S}_{n} \mathbf{e}, n \geq 2$. Either:

$$
\begin{aligned}
\varphi(\mathbf{e})=f E \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right) & =f^{-1} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R \\
\varphi_{m}(\mathbf{e})=f^{\sigma^{m}} E^{\sigma^{m}} \otimes_{\sigma} \mathbf{e}, \psi_{m}\left(1 \otimes_{\sigma} \mathbf{e}\right) & =\left(f^{-1}\right)^{\sigma^{m}} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{1}
\end{aligned}
$$

$\varphi_{\infty}(\mathbf{e})=p b \otimes_{\sigma} \mathbf{e}, \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right)=b^{-1}$ if $f(0)=b \in W_{n}\left(\mathbb{F}_{p}\right)$.
Or:

$$
\begin{aligned}
\varphi(\mathbf{e})=f \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right) & =f^{-1} \text { Ee gives } \mathfrak{S} \rightarrow R \\
\varphi_{m}(\mathbf{e})=f^{\sigma^{m}} \otimes_{\sigma} \mathbf{e}, \psi_{1}\left(1 \otimes_{\sigma} \mathbf{e}\right) & =\left(f^{-1}\right)^{\sigma^{m}} E^{\sigma^{m}} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R_{1}
\end{aligned}
$$

$$
\varphi_{\infty}(\mathbf{e})=b \otimes_{\sigma} \mathbf{e}, \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right)=p b^{-1} \text { if } f(0)=b \in W_{n}\left(\mathbb{F}_{p}\right)
$$

$$
\varphi(\mathbf{e})=f E \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=f^{-1} \mathbf{e} \text { gives } \mathfrak{S} \rightarrow R
$$

Taking the limit doesn't work well if $b \notin W_{n}\left(\mathbb{F}_{p}\right), b=f(0)$. But, $\varphi_{\infty}(\mathbf{e})=b \otimes_{\sigma} \mathbf{e}, \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right)=p b^{-1}$ if $b \notin W_{n}\left(\mathbb{F}_{p}\right)$ still works:

$$
\begin{aligned}
\psi_{\infty} \varphi_{\infty}(\mathbf{e}) & =\psi_{\infty}\left(b \otimes_{\sigma} \mathbf{e}\right)=b p b^{-1} \mathbf{e}=p \mathbf{e} \\
\varphi_{\infty} \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right) & =\varphi_{\infty}\left(p b^{-1}\right)=p b^{-1} b \otimes_{\sigma} \mathbf{e}=p \otimes_{\sigma} 1 \mathbf{e}
\end{aligned}
$$

Generally, suppose M is generated by $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{c}\right\}$ and

$$
\varphi\left(\mathbf{e}_{i}\right)=\sum_{j=1}^{c} f_{i, j} \otimes_{\sigma} \mathbf{e}_{j}, \psi\left(1 \otimes_{\sigma} \mathbf{e}_{j}\right)=\sum_{i=1}^{c} g_{j, i} \mathbf{e}_{i}, f_{i, j}, g_{j, i} \in \mathfrak{S}
$$

is a K-module structure on M relative to $\mathfrak{S} \rightarrow R$. Then

$$
\begin{gathered}
E \otimes_{\sigma} \mathbf{e}_{j}=\varphi \psi\left(1 \otimes_{\sigma} \mathbf{e}_{j}\right)=\sum_{j=1}^{c} \sum_{i=1}^{c} f_{i, j} g_{j, i} \otimes_{\sigma} \mathbf{e}_{j} \\
1 \otimes_{\sigma} p \mathbf{e}_{i}=\sum_{j=1}^{c} \sum_{i=1}^{c} f_{i, j}(0) g_{j, i}(0) \otimes_{\sigma} \mathbf{e}_{j}
\end{gathered}
$$

and we get a K-module structure on M relative to $\mathfrak{S} \rightarrow k[[t]]$:

$$
\begin{aligned}
\varphi_{\infty}\left(\mathbf{e}_{i}\right) & =\sum_{j=1}^{c} f_{i, j}(0) \otimes_{\sigma} \mathbf{e}_{j}, \\
\psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}_{j}\right) & =\sum_{i=1}^{c} g_{j, i}(0) \mathbf{e}_{i}, f_{i, j}(0), g_{j, i}(0) \in W
\end{aligned}
$$

Example (Last one.)

Let $R=W\left[\sqrt[3]{-p]}\right.$. Then $E=u^{3}+p$. Let $M=\mathfrak{S}_{n} \mathbf{e}_{1}+\mathfrak{S}_{n} \mathbf{e}_{2}$ and

$$
\begin{array}{ll}
\varphi\left(\mathbf{e}_{1}\right)=u^{3} \otimes_{\sigma} \mathbf{e}_{1}+1 \otimes_{\sigma} \mathbf{e}_{2} & \psi\left(1 \otimes_{\sigma} \mathbf{e}_{1}\right)=\mathbf{e}_{1}+\mathbf{e}_{2} \\
\varphi\left(\mathbf{e}_{2}\right)=p \otimes_{\sigma} \mathbf{e}_{1}-1 \otimes_{\sigma} \mathbf{e}_{2} & \psi\left(1 \otimes_{\sigma} \mathbf{e}_{2}\right)=p \mathbf{e}_{1}-u^{3} \mathbf{e}_{2}
\end{array}
$$

(Recall $\left(\psi(x)=\varphi^{-1}\left(\left(u^{3}+p\right) x\right)\right)$.)
Then

$$
\begin{array}{ll}
\varphi_{\infty}\left(\mathbf{e}_{1}\right)=1 \otimes_{\sigma} \mathbf{e}_{2} & \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}_{1}\right)=\mathbf{e}_{1}+\mathbf{e}_{2} \\
\varphi_{\infty}\left(\mathbf{e}_{2}\right)=p \otimes_{\sigma} \mathbf{e}_{1}-1 \otimes_{\sigma} \mathbf{e}_{2} & \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}_{2}\right)=p \mathbf{e}_{1}
\end{array}
$$

Outline

(9) Overview

(2) Kisin Modules
(3) Cyclic Examples
(4) Characteristic 0

(5) From Characteristic 0 to Characteristic p

6 Summary

We have a map

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Kisin modules } \\
\text { relative to } \mathfrak{S} \rightarrow R
\end{array}\right\} & \Rightarrow\left\{\begin{array}{c}
\text { Kisin modules } \\
\text { relative to } \mathfrak{S} \rightarrow k[[t]]
\end{array}\right\} \\
(M, \varphi, \psi) & \mapsto\left(M, \varphi_{\infty}, \psi_{\infty}\right) \\
\varphi_{\infty}(x) & \left.=\epsilon_{0}(\varphi(x))\right) \\
\psi_{\infty}(y) & \left.=\epsilon_{0}(\psi(y))\right)
\end{aligned}
$$

where $\epsilon_{0}: \mathfrak{S} \rightarrow W$ is evaluation at $u=0$.

We have a map

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Kisin modules } \\
\text { relative to } \mathfrak{S} \rightarrow R
\end{array}\right\} & \Rightarrow\left\{\begin{array}{c}
\text { Kisin modules } \\
\text { relative to } \mathfrak{S} \rightarrow k[[t]]
\end{array}\right\} \\
(M, \varphi, \psi) & \mapsto\left(M, \varphi_{\infty}, \psi_{\infty}\right) \\
\varphi_{\infty}(x) & \left.=\epsilon_{0}(\varphi(x))\right) \\
\psi_{\infty}(x) & \left.=\epsilon_{0}(\psi(x))\right)
\end{aligned}
$$

where $\epsilon_{0}: \mathfrak{S} \rightarrow W$ is evaluation at $u=0$. Issues:
(1) I doubt this map is onto.
(2) I know this map is not one-to-one: $M=\mathfrak{S}_{n} \mathbf{e}, \varphi(\mathbf{e})=u \otimes_{\sigma} \mathbf{e}$ and $M=\mathfrak{S}_{n} \mathbf{e}, \varphi(\mathbf{e})=u^{2} \otimes_{\sigma} \mathbf{e}$ both give $M=\mathfrak{S}_{n} \mathbf{e}, \varphi_{\infty}(\mathbf{e})=0, \psi_{\infty}(\mathbf{e})=p \mathbf{e}$.
(3) This seems unnatural when the whole tower does not lift.
(4) Hard to determine the corresponding Hopf algebras, particularly over $k[[t]]$.

Example (Very Last Example)

Let $C_{p}=\langle\tau\rangle$. Let $M=\mathfrak{S}_{1} \mathbf{e}, \varphi(\mathbf{e})=u^{e-(p-1)} \otimes_{\sigma} \mathbf{e}, \psi\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{p-1} \mathbf{e}$.
Then $H_{M}=R\left[\frac{\tau-1}{\pi}\right] \subset K C_{p}$.
Let $M_{1}=\mathfrak{S}_{1} \mathbf{e}, \varphi_{1}(\mathbf{e})=u^{p(e-(p-1))} \otimes_{\sigma} \mathbf{e}, \psi_{1}\left(1 \otimes_{\sigma} \mathbf{e}\right)=u^{p(p-1)} \mathbf{e}$. Then $H_{M_{1}}=R_{1}\left[\frac{\tau-1}{\pi_{1}^{\rho}}\right]=R_{1}\left[\frac{\tau-1}{\pi}\right] \subset K_{1} C_{p}$.
Generally,

$$
H_{M_{m}}=R_{m}\left[\frac{\tau-1}{\pi_{m}^{p^{m}}}\right]=R_{m}\left[\frac{\tau-1}{\pi}\right] \subset K_{m} C_{p}
$$

Let $m \rightarrow \infty$. Then

$$
\varphi_{\infty}(\mathbf{e})=0 \otimes_{\sigma} \mathbf{e}=0, \psi_{\infty}\left(1 \otimes_{\sigma} \mathbf{e}\right)=0=0
$$

What's $H_{M_{\infty}}$?

Thank you.

