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0 Overview

Alan Koch (Agnes Scott College) 2/35



Let k be a finite field, characteristic p > 2.
Let R be a discrete valuation ring, char R = 0, residue field k.
Objectives.

@ Construct (finite, commutative, cocommutative p-power rank) Hopf
algebras over R.

@ Construct (finite, commutative, cocommutative p-power rank) Hopf
algebras over K[[{]].

© Find relationships between these constructions.
Key tool. Kisin modules (née Breuil-Kisin modules).
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@ Kisin Modules
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Let:
@ W = W(k) ring of Witt vectors, W, = W/p"W length n vectors
° &= W[[u]],6n=6/p"S = Whp[[u]]
@ 0 : S — & be Frobenius-semilinear map, u — uP
o Write o(f) = f°.
o (pf)? € p&
o Wealsohaveo: 6, — &,

@ for M an G-module, M = & ®g M with
S1 Qg S2M = 5155 ®; M; S, € S, me M

@ for D a complete dvr with residue field k, pick E € & such that
E(0O)=pand D= S/EG.
e char(D) = 0 = E is an Eisenstein polynomial.
echar(D)=p=E=p

If p"M = 0 then we may assume M’ = &, ®g, M.
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A Kisin module relative to & — D is a triple (M, ¢, ¢) where

@ M is a S-module which:

e is finitely generated
e is killed by a power of p
@ has projective dimension at most 1.

@ ¢o: M— M?and vy : M° — M are G-linear maps with

vy =Eand yp =E

Remarks.

@ Y # Yp: i € End(M?) and ¢ € End(M).
@ The G-module M does not depend on D.

o Alternatively, for a given M we say (i, ¢) give a Kisin structure
relative to & — D.

@ Write M = (M, p, ).
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There is an equivalence:

{ Kisin modules } { abelian D-Hopf algebras }
relative to & — D of p-power rank

Mb—>HM
MH<—¢H

@ Mis a G-module which:
o is finitely generated: required for Hy to have finite rank.
o is killed by a power of p: p"M =0 « [p"|Hu = 0.
@ has proj. dim. M < 1: projective resolution for M « isogeny of
formal groups with cokernel Hy.
@ p: M— M?and vy : M — M are G-linear maps with
v = E and ¢ = E: v and v analogous to F and V for
Dieudonné modules.
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e Cyclic Examples
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Let M = Ge = S, (as G-modules).
Let p(e) = EQR-, e,9(1 ®,e) =e.
@ Mis a G-module which:
o is finitely generated: clear.
o is killed by a power of p: p"M = 0.
e has proj. dm. M < 1: & — & — M is a projective resolution.
@ v: M— M?and vy : M° — M are G-linear maps with
oY(1 ®, e) = E®, e and yp(e) = Ee: clear.
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Example
Let M = G1e = k[[u]]e (so M7 = &1 ®s, M).
D = R (characteristic zero):
@ Fe=ue,E®,e=Uu°®,e.
@ ¢(e) is a factor of u® ®, e, say p(e) = u'fo,e r<efe&].
° Y(1®,e)=u"f"e.
D = K([[t]] (characteristic p):
@ Fe=pe=0,Ex,e=px,e=1x,pe=0.
@ Two cases:

o Case 1. p(e)=0®,e,¢¥(1®,e)="fefecS;.
o Case?2. y(e)=f®,e, (1 ®,e)=0,fc &;.
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Example
Let M = Sre = Wp[[u]le,n > 1.
D=R:
@ o(e) is a factor of E ®, e, but E is irreducible.

e Case 1. p(e)=fE®,e,y(1®,e)="fe fec&;.
e Case 2. p(e)=f®,ev(1®,e)=rI"Ee fc&).

D = K[[t]] :
@ Fe=pe, ER,e=pR,e.
@ o(e) is a factor of p @, 1e.

e Casel. p(e)=fw,ev(1®,e)=Ff"pfec&);.
e Case 2. p(e)=fo®,ev(1x,e)=rf"fc&;.
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© Characteristic 0
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In this section, the dvr R will vary (but always be characteristic 0).
Let Egr be the Eisenstein polynomial for R with E(0) = p and let
er = e(Frac(R)/Qp).

@ Mis a G-module

@ ¢o: M— M?and vy : M° — M are G-linear maps with

o =Eandyp =E

Fact. In characteristic zero, ¢ is injective, hence v(x) = ¢~ '(Ex) and
is uniquely determined.
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Proposition

In characteristic zero, a K-module relative to & — R can be viewed as
a pair (M, @), : M — M a o-semilinear map such that

By allowing R to vary, we can construct families of K-modules.
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By allowing R to vary, we can construct families of K-modules.

Example

Let M = Gqej, p(e) = u'e (or p(e) = u" ®, e).
For all R with eg > r we have

Ege = u®F"u"e = u®F"p(e)

and (M, ¢) is a K-module relative to & — R.
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Typically, K-modules relative to a family of dvr’s are easy to construct
when M is killed by p.

Example
Let M =S1e1 ® G415 and

p(eq) = ueq + Uey
p(ez) = u'eq + ue;

Generally,
s1p(e1) + sop(es) = (usy + u’sp)er + (UPsy + uPsy)en
hence

(1 —u®) p(er) — (1 — u®) Tp(er) = uey
—uP(1 — ) T(eq) + (1 — u®) Tp(ez) = uPey,

so (M, ¢) is a K-module relative to & — R provided eg > 6.
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Cyclic case — conditions simplify to:
°
°

Suppose n > 2.

We require a factorization of Eg € &),

But Eg is irreducible in &, so it follows that p(e) = fe or

po(e) = Erfe,f € &.

In either case, we can replace f with b = f(0) € W,.

Thus ¢(e) = be or p(e) = bEe for some Eisenstein polynomial E.

In the first case, (M, ¢) is a K-module relative to & — R for every R.
In the second, (M, ¢) is a K-module relative only to & — WI{[u]]/(E).
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Example

Let M = &req + Gnez, p(e1) = uler + ez, p(e2) = pey — ex.
Then

30(91) a4 90(62) = u3e1 +€s +pes —er = (U3 = p)e1
po(er) — udp(es) = pules + pes — pule; + uPey = (U2 + p)ey

So (M, ¢) is a K-module relative to & — W[J/—p].

E = u® + pis the only Eisenstein polynomial obtained as &p-linear
combinations of p(eq) and ¢(ez), n > 2.
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Example

Let M = Greq + Gper, p(e1) = €1 + u2e2, p(en) = uey + es.
Then
syp(e1) + Spp(e2) = (S1 + Spu)eq + (s1U? + sp)es.

Notice

(1—uP)er = p(er) — UPp(er)
(1 — u*)ex = —up(er) + ¢(e2)

so given Eg we have

Erer = Ep(1 — u®)'p(e1) — PER(1 — u®)Tp(e2)
Eres = —uER(1 — ) ' p(e1) + Er(1 — u®) Tp(es)

What'’s the difference between these two examples?
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@ From Characteristic 0 to Characteristic p
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Rough idea.

@ Start with a Kisin module relative to & — R.

@ Use it to construct a K-module relative to & — Ry for Ry an
extension of R.

© Repeat, obtaining a K-module relative to a tower of extensions.
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Write R = WI[[u]]/(E), (recall E(0) = p), and let E(w) = 0,7 € R.

Then E? is an Eisenstein polynomial, E?(0) = p, and
Ry = WI([u]]/(E?) is an extension of R of degree p.
Ry = F?[7r1],7rf = .
More generally, we have R, = W([[u]]/(E°") = R["V/x].
Write E = wu® + puF +p,w e W,F € S,degF < e—1.
Then
lim E°" = w?"uP"® — puP"F°" + p7" = p
m—o0
in the u-adic topology, so

WIull/(E™") = WIlu]l/p = K([u]]-
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Let (M, ¢) be a K-module relative to & — R.
Letes,...,ec generate M, and let p(e;) = Y7, fie;.
For all i we can write

C
Ee,- = Z S,',jgp(e/'), S,',j € 6.
j=1
Define ¢ : M — M to be the semilinear map ¢1(e;) = ch:1 f7ej. Then
n
E’ei=) sipi(e))
j=1

and so (M, ¢1) is a K-module relative to & — Rj.
This is, or is close to, base change.
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Let M = Gqe,p(e) = 1 ®, e using char-free def. of K-mod.

oe)=1x,e,9(1®,e)=u’egves S - R
vi(e) =1®, e, ¢¥1(1 ®, e) = uP°e gives & — R;

vo(€) =19, e,1(1 ®, €) = P % gives & — Ry

om(€) = 1@, e,9m(1 ®, e) = uP °e gives & — Rn,
Let m — oo. Then

Yoo(@) = 1R, €, 1s(1 ®, e) =0

gives a K-module structure relative to & — Kk{[[t]].
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Let M = Gqe,p(e) = U° ®, e.

v(e) =u®®,e (1 ®,e)=egvesS — R
p1(e) = uP® ®, e, 1(1 ®, e) = e gives S — Ry
va(€) = UP? ®, e,1n(1 @, ) = e gives & — Ry

om(€) = 1P @4 €,1m(1 ®, €) = e gives & — Rn
Let m — oco. Then

vo(@) =0, e =0,Y(1 ®,e) =e

gives a K-module structure relative to & — Kk{[[t]].
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Let M = Gqe,p(e) =U"®,e,0 < r < e Then:

ple)=u"®,e (1 ®,e)=u*"egivesS — R
o1(e) = UP" ®, e, ¥1(1 ®, e) = uP® e gives & — R

pa(€) = U7 ®, e, 1p(1 ®, e) = u” (¢ e gives & — R,

om(e) = """ @, e, Ym(1 ©, ) = uP" (¢ e gives & — Ry,
Let m — oo. Then

(POO(e) = 0®Ue = 0:¢w(1 Ro e) =0

gives a (trivial) K-module structure relative to & — K[[{]].
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Example
Let M = Ge, n > 2. Either:

o(e)=fE®,e¢y(12,e)=f'egivesS — R
om(€) =7 ET" @, e,9m(1 @, e) = (f1)7"e gives & — R

Poo(€) = Pb R, €, (1 ®y €) = b~ if £(0) = b € Wi(Fp).
Or:

oe)=rfo, e (1®,e)=Ff'Eegves & — R
om(e) = 7" @, e,91(1 ®,e) = (1) E""e gives & — R,

0oo(€) = b @, €, 1o (1 @y €) = pb1 if £(0) = b € Wy(Fp).
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o(e) =fE®, e, (1 ®,e)=f"egives & — R

Taking the limit doesn’t work well if b ¢ Wp(Fp), b = (0).
But, poo(€) = bR, €,1(1 ®, €) = pb~1 if b & Wi(Fp) still works:

Voo Poo(€) = oo (b @, €) = bpb~'e = pe
Poothoo(1 @5 €) = po(pb™ ) =pb 'b®,e =p, 1e
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Generally, suppose M is generated by {e4,...,ec} and

c (o]
e) = Z fiji ®s €, (1 @y €)) = Zgj,ieh fij» )i € &
i i=1

is a K-module structure on M relative to 6 — R. Then

E®, e = pp(1®,e) = sz,,gj,@bae,
j=1 i=1

1®ape,fzzf,, )91.i(0) ® €

j=1 i=1
and we get a K-module structure on M relative to & — K{[t]]:

C
e) = Z fi;(0) ®s €,

'(poo 1®0'e/ Zgjl ela 7j gjl( ) W
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Example (Last one.)

Let R = W[¥—p]. Then E = u® + p. Let M = Seq + &Spez and
ole) =P, e1+10, e P(12,e1)=e+e
o) =p@,e1—10, €  Y(1®,ep)=per — ude,
(Recall (¢¥(x) = ¢~ ((u® + p)x)).)

Then
vo(@1) =15 €2 Yoo(1 ®s€1) = €1 + €2

‘Poo(eZ) =pPRsy € — 1 Q¢ (=) ¢oo(1 Ko e2) = pe4
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e Summary
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We have a map

{ Kisin modules }

relativeto & — R =
(M, ¢,9) = (M, oo, Vo)
Poo(X) = €0((x)))
Voo(¥) = €0(v(y)))

where ¢ : & — W is evaluation at u = 0.
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We have a map

{ Kisin modules } { Kisin modules }

relativeto & — R relative to & — Kk|[[{]]

( )y P ¢) ( y Poos ¢OO)
Poo(X) = €0((X)))
Yoo (X) = €0(¥(X)))

where ¢y : & — W is evaluation at u = 0.
Issues:
@ | doubt this map is onto.
@ | know this map is not one-to-one: M = Ge, p(e) = u ®, e and
M = Ge, o(e) = u? ®, e both give
M= Gpe, p(e) =0,1U(e) = pe.
© This seems unnatural when the whole tower does not lift.

© Hard to determine the corresponding Hopf algebras, particularly
over K[[t]].

4

l
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Example (Very Last Example)
Let Cp = (7). Let M = G1e,p(e) = us~ PNz, e, (1 ®, e) = uP'e.
Then Hy = R[='] C KCp.

Let My = S1e, p¢(e) = uPe=(P-1) o e 91(1 ®, ) = uPP~Ne. Then
Hu, = R1[%] = Ri[=] C K1 Cp.

Generally,

7 —1

] € KmCp.

7 —1
Mm m[wﬁq] m[ =

Let m — oco. Then

Voo(€) =0®, e =0,19(1 ®,€)=0=0.

What's Hy_?
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Thank you.
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