Hereditary Associated Orders for Hopf-Galois Structures on Tame Extensions

Paul Truman

Keele University, UK

Maximal Associated Orders

- Let L/K be a finite Galois extension of p-adic fields and H = L[N]^G a Hopf algebra giving a Hopf-Galois structure on the extension.
- Write $\Lambda = \mathfrak{O}_L[N]$. Note that |N| = |G|.

Theorem (PT)

Suppose that H is commutative and $p \nmid [L : K]$. Then Λ^G is the unique maximal order in H, $\mathfrak{A}_H = \Lambda^G$ and \mathfrak{O}_L is a free Λ^G -module.

- The second and third conclusions follow from the first:
- Since Λ^G is a maximal order, it is hereditary.
- So \mathfrak{O}_L is a finitely generated projective Λ^G -module.
- Also, $\mathfrak{O}_L \otimes_{\mathfrak{O}_K} K = L$ is a free $\Lambda^G \otimes_{\mathfrak{O}_K} K = H$ -module of rank one.
- Since Λ^G is a maximal order, (or since *H* is commutative), this implies that \mathfrak{O}_L is a free Λ^G -module.

Maximal Associated Orders

Theorem (PT)

Suppose that H is commutative and $p \nmid [L : K]$. Then Λ^G is the unique maximal order in H, $\mathfrak{A}_H = \Lambda^G$ and \mathfrak{O}_L is a free Λ^G -module.

- Can we drop the hypothesis that *H* should be commutative?
- If *H* is noncommutative then it need not contain a unique maximal order, but if Λ^G is **a** maximal order in *H*, then the other conclusions will follow.
- Motivation: Hopf-Galois module structure of tame Galois extensions of degree *pq*. Would like to restrict attention to cases where the residue characteristic is either *p* or *q*.

Skew Group Rings

- Let *R* be a ring with unity and *G* a finite group of automorphisms of *R*.
- The Skew Group Ring R * G is the free *R*-module whose basis is the elements of *G*, with multiplication defined by

$$(rg)(sh) = r(g^{-1}s)gh$$
 for all $r, s \in R, g, h \in G$.

Proposition

Suppose that $|G|^{-1} \in R$, and let *e* denote the idempotent $\frac{1}{|G|} \sum_{g \in G} g$ of R * G. Then

$$R^G \cong e(R * G)e.$$

Proposition

Consider R as a right R * G-module. Then $R^G \cong \operatorname{End}_{R*G}(R)$.

Λ^G is a Hereditary Order

Theorem

Suppose that $p \nmid |G|$. Then $\Lambda * G$ and Λ^G are both hereditary.

Proof.

- Since p ∤ |G| = |N|, Λ = 𝔅_L[N] is a maximal 𝔅_L-order in L[N], so Λ is hereditary.
- Since Λ is hereditary and contains a central element of trace 1, Λ * G is hereditary.
- Since $\Lambda * G$ is hereditary, $e(\Lambda * G)e \cong \Lambda^G$ is hereditary.

- So \mathfrak{O}_L is a finitely generated projective Λ^G -module, and L is a free H-module.
- Does this imply that \mathfrak{O}_L is a free Λ^G -module? One way to achieve this is to show that Λ^G is maximal.

Is Λ^G a Maximal Order?

• Continue to assume that $p \nmid |G| = |N|$.

Proposition

Suppose that Γ is a maximal \mathfrak{O}_{K} -order in a separable K-algebra A, and that M is a Γ -lattice. Then $\operatorname{End}_{\Gamma}(M)$ is a maximal \mathfrak{O}_{K} -order in $\operatorname{End}_{A}(KM)$.

 If Λ * G is a maximal order in L[N] * G, then Λ is a Λ * G-lattice, and so End_{Λ*G}(Λ) ≅ Λ^G is a maximal order in End_{L[N]*G}(L[N]) ≅ H.

Proposition

 $\mathfrak{O}_L * G$ is a maximal order in L * G is and only if L/K is unramified.

 In our case, it is certainly sufficient that L/K be unramified, but is it necessary?

Another Route: Conductors

Suppose that Γ is a maximal \$\mathcal{D}_K\$-order in \$H\$ containing \$\Lambda^G\$.
Define

$$\begin{bmatrix} \Gamma, \Lambda^G \end{bmatrix}_I = \left\{ x \in H \mid x\Gamma \subseteq \Lambda^G \right\}$$
$$\begin{bmatrix} \Gamma, \Lambda^G \end{bmatrix}_r = \left\{ x \in H \mid \Gamma x \subseteq \Lambda^G \right\}$$

• Since Λ^G is Hereditary, we have

$$\Gamma \cdot \left[\Gamma, \Lambda^G \right]_I = \Gamma.$$

• Clearly $[\Gamma, \Lambda^G]_I$ is a right Γ -module. If it is also a left Γ -module, then we would have

$$\left[\Gamma, \Lambda^G \right]_I = \Gamma,$$

and we would be done.

• So a sufficient condition for Λ^{G} to be maximal is that

$$\left[\Gamma, \Lambda^G \right]_{I} = \left[\Gamma, \Lambda^G \right]_{I}$$

Paul Truman

Symmetric Orders

 Call an order 𝔅 in a separable K-algebra A Symmetric if there is a nondegenerate symmetric bilinear form τ : 𝔅 × 𝔅 → 𝔅_K such 𝔅 is selfdual with respect to τ:

$$\mathfrak{B}^* = \{ a \in A \mid \tau(a, b) \in \mathfrak{O}_K \text{ for all } b \in \mathfrak{B} \} = \mathfrak{B}.$$

Proposition

If ${\mathfrak B}$ is a symmetric order and Γ is a maximal order containing ${\mathfrak B}$ then

$$\left[\Gamma : \mathfrak{B} \right]_{l} = \left[\Gamma : \mathfrak{B} \right]_{r}.$$

Proposition

If \mathfrak{B} is a symmetric order in A and $e \in \mathfrak{B}$ is an idempotent then $e\mathfrak{B}e$ is a symmetric order in eAe.

Symmetric Orders

- So if we can find a nondegenerate symmetric bilinear form on
 L[N] * G with respect to which Λ * G is selfdual, then Λ^G ≅ e(Λ * G)e
 is a symmetric order, and we will be done.
- There is a nondegenerate bilinear form on L[N] * G with these properties, but it is not symmetric. It does induce a nondegenerate symmetric bilinear form on $\Lambda^G \cong e(\Lambda * G)e$, however.
- There is a nondegenerate symmetric bilinear form on H, but Λ^G is not selfdual with respect to this form!

Hattori's Theorem

- We do not actually **need** Λ^G to be maximal.
- What we need is a result such as

"If M, N are finitely generated projective Λ^G modules and $K \otimes M \cong K \otimes N$ as $K \otimes \Lambda^G$ -modules then $M \cong N$ as Λ^G -modules."

- Swan's Theorem is that such a result holds for group rings.
- One way to prove Swan's theorem is using Hattori's theorem:

Theorem (Hattori)

- Let A be a finite \mathfrak{O}_K -algebra.
- Let [A, A] be the \mathfrak{O}_K -submodule generated by all commutators ab ba.
- Suppose that A/[A, A] is \mathfrak{O}_K -torsion free.

Then two finitely generated projective A-modules M, N are isomorphic if and only if $K \otimes M$ and $K \otimes N$ are isomorphic $K \otimes A$ -modules.

Separability

• In the case of the group ring Λ , we have

 $\Lambda/[\Lambda,\Lambda] \cong Z(\Lambda)$ as $Z(\Lambda)$ -modules.

- Could this also be the case for Λ^G ?
- We have
 - $Z(\Lambda^G) = Z(\Lambda)^G$. • $[\Lambda^G, \Lambda^G] \subset [\Lambda, \Lambda]^G$.
- A sufficient condition for

$$\Lambda^G/[\Lambda^G, \Lambda^G] \cong Z(\Lambda^G)$$
 as Λ^G -modules

is that Λ^G be separable over \mathfrak{O}_K .

• But this is stronger than Λ^G being maximal!

Separability

- In fact, it would be sufficient to show that Λ^G is separable over $Z(\Lambda^G)$ i.e. it is Azumaya.
- I can say a little about the centres:
 - $Z(\Lambda^G)$ is the unique maximal \mathfrak{O}_K -order in Z(H)
 - I think I have found a criterion for $Z(\Lambda^G)$ to be separable over \mathfrak{O}_K

But neither of these seem to help very much!

- Thank you for your patience!
- Any thoughts?