Integral Hopf-Galois Structures for Tame Extensions

Paul Truman

Keele University, UK

Hopf-Galois Structures

 Nonclassical Hopf-Galois structures can provide a variety of viewpoints on a given finite separable extension of fields L/K. We will focus on Galois extensions of p-adic fields.

Definition

If H is a K-Hopf algebra then we say that H gives a Hopf-Galois Structure on the extension L/K, or that L is an H-Galois extension of K, if:

- L is an H-module algebra
- The K linear map:

$$j: L \otimes H \to \operatorname{End}_{K}(L)$$

defined by

$$j(s\otimes h)(t)=s(h\cdot t)$$

is an isomorphism.

• The group algebra *K*[*G*] gives a Hopf-Galois structure on *L*/*K*. (The Classical Structure)

Paul Truman

Greither-Pareigis Theory

Let Perm(G) be the group of permutations of G. Define an embedding $\lambda : G \rightarrow Perm(G)$ by left translation:

 $\lambda(g)(h) = gh$ for $g, h \in G$.

Theorem (Greither and Pareigis)

- There is a bijection between regular subgroups N of Perm(G) normalised by λ(G) and Hopf-Galois structures on L/K.
- If N is such a subgroup, then G acts on the group algebra L[N] by acting on L as Galois automorphisms and on N by conjugation via λ:

$${}^{g}n = \lambda(g)n\lambda(g^{-1})$$
 for $g \in G, n \in N$.

• The Hopf algebra giving the Hopf-Galois structure corresponding to the subgroup N is

$$H = L[N]^G = \{z \in L[N] \mid {}^g z = z \text{ for all } g \in G\}.$$

Hopf-Galois Module Theory

Definition

If L/K is H-Galois, then we define the Associated Order of \mathfrak{O}_L in H by

 $\mathfrak{A}_{H} = \{ h \in H \mid h \cdot x \in \mathfrak{O}_{L} \text{ for all } x \in \mathfrak{O}_{L} \}.$

- What can we say about the structure of \mathfrak{O}_L as an \mathfrak{A}_H -module?
- Each Hopf algebra that gives a Hopf-Galois structure on L/K provides a different description of D_L.
- In the classical structure (H = K[G]):
 - If L/K is at most tamely ramified then \$\mathcal{U}_{K[G]} = \mathcal{O}_{K}[G]\$ and \$\mathcal{O}_{L}\$ is a free \$\mathcal{O}_{K}[G]\$-module of rank one (Noether's Theorem).
 - If L/K is wildly ramified then $\mathfrak{O}_K[G] \subsetneq \mathfrak{A}_{K[G]}$.
- There exist wildly ramified extensions L/K for which D_L is not free over A_{K[G]} but is free over A_H for some other Hopf algebra H giving a Hopf-Galois structure on L/K.

Hopf-Galois Module Theory

Definition

We call an \mathfrak{O}_K -order A in H a *Hopf Order* if it is an \mathfrak{O}_K -Hopf algebra with structure maps induced from those on H.

Definition

Suppose that A is a Hopf order in H.

- Recall that an element $\theta \in A$ is called a *left integral* of A if $\theta a = \varepsilon(a)\theta$ for all $a \in A$.
- We say that D_L is an A-tame extension of D_K if there exists a left integral θ of A satisfying θD_L = D_K.

Theorem (Childs)

Suppose that A is a Hopf order in H and that \mathfrak{O}_L is an A-tame extension of \mathfrak{O}_K . Then \mathfrak{O}_L is a free A-module of rank one.

Two Results on Tame Extensions

- If L/K is at most tamely ramified then \$\mathbb{A}_{K[G]} = \mathcal{O}_{K}[G]\$ and \$\mathcal{O}_{L}\$ is free over \$\mathbb{A}_{K[G]}\$.
- Can we say anything about the structure of \mathfrak{O}_L as a module over its associated order in any of the nonclassical Hopf-Galois structures admitted by the extension?
- If H = L[N]^G is a Hopf algebra giving a Hopf-Galois structure on the extension, write Λ = D_L[N].

Theorem (PT)

Suppose that H is commutative and $p \nmid [L : K]$. Then Λ^G is the unique maximal order in H, $\mathfrak{A}_H = \Lambda^G$ and \mathfrak{O}_L is a free Λ^G -module.

Theorem (PT)

Suppose that L/K is unramified. Then Λ^G is a Hopf order in H, $\mathfrak{A}_H = \Lambda^G$ and \mathfrak{O}_L is a free Λ^G -module.

Describing Λ^{G}

- Recall that G acts on N by conjugation via the embedding λ .
- Let N_1, \ldots, N_r be the orbits of G in N.
- For each i = 1, ..., r, let $n_i \in N_i$ be a generator of the orbit N_i , and let $S_i = \text{Stab}_G(n_i)$.
- Now let L_i = L^{S_i}, and let {x_{i,j} | j = 1,..., [L_i : K]} be an integral basis of L_i over K. For each i = 1,..., r and j = 1,..., [L_i : K], define

$$a_{i,j} = \sum_{g \in G/S_i} g(x_{i,j})^g n_i,$$

where the sum is taken over a set of left coset representatives of S_i in G (in general S_i need not be normal in G).

Then the set

$$\{a_{i,j} \mid i = 1, \dots, r, j = 1, \dots, [L_i : K]\}$$

is an \mathfrak{O}_K -basis of Λ^G .

When is Λ^G a Hopf order?

Theorem

The following are equivalent:

- The \mathfrak{O}_K -order Λ^G is a Hopf order in H,
- **2** For each i = 1, ..., r, the extension L_i/K is unramified,
- **③** The kernel of the action of G on N contains the inertia group of L/K.

Theorem

Suppose that L/K is at most tamely ramified and that Λ^G is a Hopf order in H. Then $\mathfrak{A}_H = \Lambda^G$ and \mathfrak{O}_L is a free Λ^G -module.

Proof.

- The element $\theta = \sum_{n \in N} n$ is a left integral of Λ^G , and there exists $x \in \mathfrak{O}_L$ such that $\theta \cdot x = \operatorname{tr}_{L/K}(x) = 1$.
- So 𝔅_L is a Λ^G-tame extension of 𝔅_K, and so 𝔅_L is a free Λ^G-module by Childs's theorem. Thus 𝔅_H = Λ^G.

Duality for Λ^G

- The dual algebra H^* is separable and commutative.
- It therefore has a unique maximal order Γ.
- In the notation used to describe $\Lambda^G,$ there is an isomorphism of $\mathfrak{O}_K\text{-algebras}:$

$$\Gamma \cong \prod_{i=1}^r \mathfrak{O}_{L_i}.$$

• In particular, we have

$$\mathfrak{d}(\Gamma) = \prod_{i=1}^r \mathfrak{d}(\mathfrak{O}_{L_i}).$$

We also have

$$(\Lambda^G)^* = \Gamma \Leftrightarrow \Lambda^G$$
 is a Hopf order in H .

Integral Hopf-Galois Structures

Theorem (Greither)

Suppose that A is a Hopf order in H such that \mathfrak{O}_L is an A-module algebra. Then \mathfrak{O}_L is an A-Galois extension of \mathfrak{O}_K if and only if

 $\mathfrak{d}(\mathfrak{O}_L) = \mathfrak{d}(A^*).$

Theorem

The valuation ring \mathfrak{O}_L is a Λ^G -Galois extension of \mathfrak{O}_K if and only if L/K is unramified.

Proof.

- Λ^G is a Hopf order if and only if each L_i is unramified over K.
- But in this case $\mathfrak{d}((\Lambda^G)^*) = \prod_{i=1}^r \mathfrak{d}(\mathfrak{O}_{L_i}) = \mathfrak{O}_K$
- So \mathfrak{O}_L is a Λ^G -Galois extension of \mathfrak{O}_K if and only if $\mathfrak{d}(\mathfrak{O}_L) = \mathfrak{O}_K$.

- Let *p* and *q* be distinct primes.
- Write ℓ for the residue characteristic of K from now on.
- Consider commutative Hopf-Galois structures on Galois extensions L/K of degree pq which are at most tamely ramified.
- Two possibilities for the structure of G = Gal(L/K): $G \cong C_{pq}$ or $G \cong M_{pq}$.

Theorem (Byott)

If $p \not\equiv 1 \pmod{q}$ then $G \cong C_{pq}$ and L/K admits only the classical Hopf-Galois structure, with H = K[G].

- In this case Λ^G = 𝔅_K[G], and 𝔅_L is a free 𝔅_K[G]-module by Noether's theorem.
- \mathfrak{O}_L is an $\mathfrak{O}_K[G]$ -Galois extension of \mathfrak{O}_K if and only if L/K is unramified.

• Suppose that $p \equiv 1 \pmod{q}$ from now on.

Theorem (Byott)

- If L/K is cyclic then it admits precisely 2q 1 Hopf-Galois structures. The classical structure is of cyclic type, and the other 2(q - 1) structures are of metacyclic type.
- If L/K is metacyclic then it admits precisely 2 + p(2q 3) Hopf-Galois structures. Of these, p are of cyclic type and the remainder are of metacyclic type.
- We can deal with the classical structure on a cyclic extension as before.
- Since cyclic extensions do not admit any commutative nonclassical structures, we shall say nothing more about them.

- Summary: p, q prime numbers, $p \equiv 1 \pmod{q}$. L/K tamely ramified Galois extension of ℓ -adic fields with group M_{pq} .
- L/K admits p commutative nonclassical Hopf-Galois structures.

Theorem

Suppose that $\ell \nmid pq$. For each commutative Hopf algebra $H = L[N]^G$ giving a Hopf-Galois structure on the extension, $\mathfrak{A}_H = \Lambda^G$ and \mathfrak{O}_L is a free \mathfrak{O}_L -module.

- The case $\ell = p$ cannot occur:
- Let L_0 be the maximal unramified subextension of L/K. Then $Gal(L/L_0) = G_0 \triangleleft G$.
- Since L/K is tamely ramified we require ℓ ∤ |G₀|, so if ℓ = p then |G₀| = q.
- But M_{pq} does not have any normal subgroups of order q, so this is impossible.

- The remaining case is $\ell = q$.
- We may present $G \cong M_{pq}$ as

$$G = \langle \sigma, \tau \mid \sigma^{p} = \tau^{q} = 1, \tau \sigma \tau^{-1} = \sigma^{d} \rangle,$$

where d is a fixed natural number whose order modulo p is q.

We must have |G₀| = p, and G₀ = ⟨σ⟩, the unique normal subgroup of order p in G.

- A result of Byott describes explicitly the *p* regular subgroups of Perm(G) which correspond to the commutative nonclassical Hopf-Galois structures on L/K. Denote them by N_c, for 0 ≤ c ≤ p − 1.
- Recall that G acts on each N_c by conjugation via the embedding λ :

$${}^{g}n = \lambda(g)n\lambda(g^{-1})$$
 for all $g \in G, n \in N_{c}$.

- Using the explicit description of each N_c , it is easy to show that for each c, we have $\sigma' n = n$ for all $r \in \mathbb{Z}$ and $n \in N_c$, so $\langle \sigma \rangle = G_0$ is contained in the kernel of the action of G on N_c .
- Therefore by a previous theorem $\Lambda_c^G = \mathfrak{O}_L[N_c]^G$ is a Hopf order in $H_c = L[N_c]^G$, and since L/K is tamely ramified $\mathfrak{A}_H = \Lambda_c^G$ and \mathfrak{O}_L is a free Λ_c^G -module.

Theorem

Let p, q and ℓ be prime numbers, and let L/K be a Galois extension of ℓ -adic fields which has degree pq and is at most tamely ramified. Let $H = L[N]^G$ be a commutative Hopf algebra giving a Hopf-Galois structure on the extension. Then:

- $\mathfrak{A}_H = \mathfrak{O}_L[N]^G$, and \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module,
- \mathfrak{O}_L is a $\mathfrak{O}_L[N]^G$ -Galois extension of \mathfrak{O}_K if and only if L/K is unramified and H = K[G], giving the classical structure on L/K.

Further Work

- I had wondered whether tameness of the extension L/K might imply that $\mathfrak{A}_H = \Lambda^G$ and \mathfrak{O}_L is a free Λ^G -module in each of the Hopf algebras H giving Hopf-Galois structures on the extension.
- This is not true; one of the nonclassical structures of metacyclic type on a metacyclic extension of degree *pq* does not behave like this.
- But clearly it happens under some circumstances, so the questions have become: under what circumstances do we have this kind of behaviour, and can we explain what happens in other cases?
- An obvious class of extensions to study first are those where the residue characteristic does not divide the degree of the extension. See my second talk!