EXTENSIONS OF GROUP SCHEMES IN CHARACTERISTIC p

Robert G. Underwood
Department of Mathematics/Informatics
Auburn University Montgomery
P. O. Box 244023
Montgomery, AL 36124-4023
runderwo@aum.edu

June 30, 2013

1. Introduction

Let p be a prime number, let n be an integer, $n \geq 1$, and let \mathbb{F}_{q} denote the Galois field with $q=p^{n}$ elements. Let t be an indeterminate, let $R=\mathbb{F}_{q}[[t]]$ and let $K=\operatorname{Frac}(R)=\mathbb{F}_{q}((t)) . \quad R$ is a local ring with maximal ideal (t); an element $x \in K$ can be written as $x=u t^{i}$ for some unit $u \in R$, and some $i \in \mathbb{Z}$. The (t)-order of x is $\operatorname{ord}(x)=i$.

Let $C_{p} \times C_{p}$ denote the elementary abelian group of order p^{2} with σ, τ generating the left and right copies of C_{p}. Let $C_{p} \times C_{p} \rightarrow C_{p}$ denote the canonical surjection defined by $\sigma \mapsto 1$. For integers $i, j \geq 0$, there are Hopf (Larson) orders in $K C_{p}$ given as

$$
H(i)=R\left[\frac{\sigma-1}{t^{i}}\right], \quad H(j)=R\left[\frac{\tau-1}{t^{j}}\right]
$$

Suppose $\mu \in K$ is so that $\operatorname{ord}(\mu) \geq-i+(j / p)$. Then there is an R-Hopf order in $K\left(C_{p} \times C_{p}\right)$ of the form

$$
H(i, j, \mu)=R\left[\frac{\sigma-1}{t^{i}}, \frac{\sigma^{[-\mu]} \tau-1}{t^{j}}\right]
$$

with

$$
\sigma^{[-\mu]}=\sum_{m=0}^{p-1}\binom{-\mu}{m}(\sigma-1)^{m}
$$

called an Elder order in $K\left(C_{p} \times C_{p}\right)$ [2].
The Elder order $H(i, j, \mu)$ induces a short exact sequence of R-Hopf orders

$$
R \rightarrow H(i) \rightarrow H(i, j, \mu) \rightarrow H(j) \rightarrow R
$$

or equivalently, a short exact sequence of R-group schemes

$$
\begin{equation*}
0 \rightarrow \operatorname{Spec} H(j) \rightarrow \operatorname{Spec} H(i, j, \mu) \rightarrow \operatorname{Spec} H(i) \rightarrow 0 \tag{1}
\end{equation*}
$$

Sequence (1) represents an equivalence class in $\operatorname{Ext}^{1}(\operatorname{Spec} H(i)$, Spec $H(j))$, the group of 1-extensions of Spec $H(j)$ by Spec $H(i)$. Over K elements of $\operatorname{Ext}^{1}(\operatorname{Spec} H(i)$, $\operatorname{Spec} H(j))$ appear as

$$
0 \rightarrow \mu_{p, K} \rightarrow \mu_{p, K} \times \mu_{p, K} \rightarrow \mu_{p, K} \rightarrow 0
$$

where $\boldsymbol{\mu}_{\boldsymbol{p}, K}$ denotes the multiplicative group of the p roots of unity over K. So to compute Hopf orders in $K\left(C_{p} \times C_{p}\right)$ (including those of Elder type) we ought to compute the group of extensions Ext ${ }^{1}$ (Spec $H(i)$, Spec $\left.H(j)\right)$.

Unfortunately, the direct computation of this group is too difficult. The problem is somewhat easier if we consider the linear duals of $H(i)$ and $H(j)$.

In this paper we compute the elements in $\operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}\right.$, $\left.\operatorname{Spec} H(i)^{*}\right)$ which over K appear as

$$
0 \rightarrow \mathbf{C}_{p, K} \rightarrow \mathbf{C}_{p, K} \times \mathbf{C}_{p, K} \rightarrow \mathbf{C}_{p, K} \rightarrow 0
$$

where $\mathbf{C}_{p, K}$ is the constant group scheme of C_{p} over K. These are the generically trivial extensions, denoted as $\operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}\right.$, $\left.\operatorname{Spec} H(i)^{*}\right)$. We then compute the representing algebras of the middle terms of these generically trivial extensions, take their duals, and show that these duals are Elder orders in $K\left(C_{p} \times C_{p}\right)$. We follow the method of C. Greither [3, Part I] where the author has solved the analogous problem in the characteristic 0 case. Here is our main result (Proposition 3.9.)

Main Theorem. Let H be an arbitrary R-Hopf order in $K\left(C_{p} \times C_{p}\right)$ that induces the short exact sequence

$$
R \rightarrow H(i) \rightarrow H \rightarrow H(j) \rightarrow R .
$$

Then H is an Elder order in $K\left(C_{p} \times C_{p}\right)$.
We begin with some preliminary results concerning the Larson order $H(i)$.

2. Larson Orders in $K C_{p}$

Let G be a finite group of order n whose elements are listed as $1=g_{0}, g_{1}, \ldots, g_{n-1}$. Let T be a commutative ring with unity. Then the group ring $T G$ is a T-Hopf algebra with comultiplication $\Delta_{T G}$: $T G \rightarrow T G \otimes_{T} T G$ defined as $g_{k} \mapsto g_{k} \otimes g_{k}$, counit $\epsilon_{T G}: T G \rightarrow T$ defined by $g_{k} \mapsto 1$ and coinverse $S_{T G}: T G \rightarrow T G$ given by $g_{k} \mapsto g_{k}^{-1}$, for $0 \leq k \leq n-1$. Note that $B=\left\{g_{0}, g_{1}, \ldots, g_{n-1}\right\}$ is a T-basis for
$T G$. Let $T G^{*}=\operatorname{Hom}_{T}(T G, T)$ denote the T-module of T-linear maps $T G \rightarrow T$ (the linear dual of $T G$.) Let $\left\{e_{0}, e_{1}, \ldots, e_{n-1}\right\}$ be the basis of $T G^{*}$ dual to the basis B, that is, $\left\langle e_{l}, g_{k}\right\rangle=e_{l}\left(g_{k}\right)=\delta_{l, k}$, with

$$
\langle,\rangle: T G^{*} \times T G \rightarrow T
$$

the duality map.
Proposition 2.1. $T G^{*}$ is a T-Hopf algebra.
Proof. The T-algebra structure of $T G^{*}$ is induced from the T-coalgebra structure of $T G$: the dual basis $\left\{e_{0}, e_{1}, \ldots, e_{n-1}\right\}$ is a collection of minimal idempotents and consequently

$$
T G^{*}=\bigoplus_{m=0}^{n-1} T e_{m} \cong T^{n}
$$

as T-algebras. The T-coalgebra structure of $T G^{*}$ is induced from the T-algebra structure of $T G$: comultiplication is defined by

$$
\Delta_{T G^{*}}\left(e_{m}\right)=\sum_{g_{m}=g_{a} g_{b}} e_{a} \otimes e_{b}
$$

and the counit map is defined as $\epsilon_{T G^{*}}\left(e_{m}\right)=\delta_{m, 0}$. The coinverse map for $T G^{*}$ is the transpose of the coinverse of $T G$, and is given by $S_{T G^{*}}\left(e_{m}\right)=e_{n}$ with $g_{n}=g_{m}^{-1}$, cf. [1, §1.4].

Applying Proposition 2.1 to the case $T=K, G=C_{p}$, we see that $K C_{p}^{*}$ is a K-Hopf algebra. Let $H(i)=R\left[\frac{\sigma-1}{t^{i}}\right], i \geq 0$, be a Larson order in $K C_{p}$ and let $H(i)^{*}=\operatorname{Hom}_{R}(H(i), R)$ denote the R-module of R-linear maps $H(i) \rightarrow R$, the linear dual of $H(i)$.
Proposition 2.2. For $i \geq 0, H(i)^{*}=R\left[\frac{\sigma-1}{t^{i}}\right]^{*}$ is an R-Hopf order in $K C_{p}^{*}$.
Proof. Since $H(i)=R\left[\frac{\sigma-1}{t^{i}}\right]$ is an R-submodule of $K C_{p}$, free of rank p over $R, H(i)^{*}=R\left[\frac{\sigma-1}{t^{i}}\right]^{*}$ is an R-submodule of $K C_{p}^{*}$, free of rank p over R. Morover, since $H(i)$ is invariant under the comultiplication of $K C_{p}, H(i)^{*}$ is closed under the multiplication of $K C_{p}^{*}$. Moreover, $K H(i)^{*}=K C_{p}^{*}$, and so $H(i)^{*}$ is an R-order in $K C_{p}^{*}$.

Furthermore, since $H(i)$ is closed under the multiplication of $K C_{p}$, $H(i)^{*}$ is invariant under the comultiplication of $K C_{p}^{*}$. Thus $H(i)^{*}$ is an R-Hopf order in $K C_{p}^{*}$.

Proposition 2.3. For $i \geq 0, H(i)^{*}=R\left[\frac{\sigma-1}{t^{i}}\right]^{*}$ is an R-Hopf algebra with Hopf algebra structure induced from $K C_{p}^{*}$.

Proof. From Proposition 2.2, we know that $H(i)^{*}$ is an R-algebra. Since $H(i)^{*}$ is an R-Hopf order in $K C_{p}^{*}$, the comultiplication for $H(i)^{*}$ is the restriction of $\Delta_{K C_{p^{*}}}$ to $H(i)^{*}$. Since the counit map $\epsilon_{K C_{p}^{*}}$ is the transpose of the unit map $\lambda_{K C_{p}}$, the counit map $\epsilon_{K C_{p}^{*}}$ restricts to give a map $H(i)^{*} \rightarrow R$, which we take to be the counit map of $H(i)^{*}$. Since the coinverse map $S_{K C_{p}^{*}}$ is the transpose of the coninverse map $S_{K C_{p}}$, the coninverse map restricts to give a map $H(i)^{*} \rightarrow H(i)^{*}$, which we take to be the coninverse of $H(i)^{*}$. Thus $H(i)^{*}$ is an R-Hopf algebra with structure maps induced from $K C_{p}^{*}$.

One has an inclusion

$$
R C_{p}=R[\sigma-1] \subseteq R\left[\frac{\sigma-1}{t^{i}}\right]
$$

and so there is an inclusion of linear duals

$$
R\left[\frac{\sigma-1}{t^{i}}\right]^{*} \subseteq R C_{p}^{*}
$$

By Proposition 2.1, $R C_{p}^{*}=\bigoplus_{m=0}^{p-1} R e_{m} \cong R^{p}$, and so $H(i)^{*} \subseteq \bigoplus_{m=0}^{p-1} R e_{m} \cong$ R^{p}. An R-basis for $R\left[\frac{\sigma-1}{t^{i}}\right]^{*}$ can therefore be obtained in terms of the e_{m}.

There is a symmetric non-degenerate bilinear form on $K C_{p}^{*}$

$$
B: K C_{p}^{*} \times K C_{p}^{*} \rightarrow K
$$

defined as $B(x, y)=\sum_{m=0}^{p-1} \sigma^{m}(x y)$. Here σ^{m} is considered as an element of the double dual $K C_{p}^{* *}=K C_{p}$. For an R-order A in $K C_{p^{*}}$, free of rank p on the basis $\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$, we define

$$
\operatorname{disc}(A / R)=R \operatorname{det}\left(B\left(b_{m}, b_{n}\right)\right)
$$

Proposition 2.4. An R-basis for $H(i)^{*}=R\left[\frac{\sigma-1}{t^{2}}\right]^{*}$ is of the form $\left\{1, \beta, \beta^{2}, \ldots, \beta^{p-1}\right\}$ where

$$
\beta=t^{i} e_{1}+2 t^{i} e_{2}+\cdots+(p-1) t^{i} e_{p-1} .
$$

Thus $H(i)^{*}=R[\beta]$ with $\beta^{p}=t^{(p-1) i} \beta$.
Proof. An R-basis for $H(i)=R\left[\frac{\sigma-1}{t^{i}}\right]$ is

$$
\left\{1, \frac{\sigma-1}{t^{i}},\left(\frac{\sigma-1}{t^{i}}\right)^{2}, \ldots,\left(\frac{\sigma-1}{t^{i}}\right)^{p-1}\right\} .
$$

For $0 \leq k, l \leq p-1$, let

$$
v_{k, l}= \begin{cases}\binom{k}{l} t^{l i} & \text { if } k \geq l \\ 0 & \text { if } k<l .\end{cases}
$$

Then

$$
\left\langle v_{0, k} e_{0}+v_{1, k} e_{1}+\cdots+v_{p-1, k} e_{p-1},\left(\frac{\sigma-1}{t^{i}}\right)^{l}\right\rangle=\delta_{k, l} .
$$

Thus, with respect to the basis $E=\left\{e_{0}, e_{1}, \ldots, e_{p-1}\right\}$ for $R C_{p}^{*}, H(i)^{*}$ has a basis consisting of the columns of the $p \times p$ matrix

$$
M_{E}=\left(\begin{array}{ccccccc}
\binom{0}{0} & 0 & 0 & 0 & 0 & \cdots & 0 \\
\binom{1}{0} & \binom{1}{1} t^{i} & 0 & 0 & 0 & \cdots & 0 \\
\binom{2}{0} & \binom{2}{1} t^{i} & \binom{2}{2} t^{2 i} & 0 & 0 & \cdots & 0 \\
\vdots & & & \ddots & & \vdots \\
& \vdots & & & & & \\
\binom{p-1}{0} & \binom{p-1}{1} t^{i} & \binom{p-1}{2} t^{2 i} & \cdots & & \cdots & \binom{p-1}{p-1} t^{(p-1) i}
\end{array}\right) .
$$

Put

$$
\begin{aligned}
\beta & =\binom{1}{1} t^{i} e_{1}+\binom{2}{1} t^{i} e_{2}+\cdots+\binom{p-1}{1} t^{i} e_{p-1} \\
& =t^{i} e_{1}+2 t^{i} e_{2}+\cdots+(p-1) t^{i} e_{p-1} .
\end{aligned}
$$

Now, $\beta^{p}=t^{(p-1) i} \beta$. We claim that $R[\beta]=H(i)^{*}$. Certainly, $R[\beta] \subseteq$ $H(i)^{*}$. We show equality by showing that

$$
\operatorname{disc}\left(H(i)^{*} / R\right)=\operatorname{disc}(R[\beta] / R)
$$

Note that $\operatorname{disc}\left(R C_{p}^{*} / R\right)=R$. One has that the module index

$$
\begin{aligned}
{\left[R C_{p}^{*}: H(i)^{*}\right] } & =R \operatorname{det}\left(M_{E}^{T}\right) \\
& =R t^{(1+2+\cdots+(p-1)) i} \\
& =R t^{p(p-1) i / 2}
\end{aligned}
$$

and so,

$$
\begin{aligned}
\operatorname{disc}\left(H(i)^{*} / R\right) & =\left[R C_{p}^{*}: H(i)^{*}\right]^{2} \operatorname{disc}\left(R C_{p}^{*} / R\right) \\
& =R t^{p(p-1) i} .
\end{aligned}
$$

On the other hand, $\left\{1, \beta, \beta^{2}, \ldots, \beta^{p-1}\right\}$ is a an R-basis for $R[\beta]$ and its basis matrix with respect to E is

$$
N_{E}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & t^{i} & \left(t^{i}\right)^{2} & \cdots & \left(t^{i}\right)^{p-1} \\
1 & 2 t^{i} & \left(2 t^{i}\right)^{2} & \cdots & \left(2 t^{i}\right)^{p-1} \\
& \vdots & & & \vdots \\
1 & (p-1) t^{i} & \left((p-1) t^{i}\right)^{2} & \cdots & \left((p-1) t^{i}\right)^{p-1}
\end{array}\right) .
$$

Since N_{E} is Vandermonde,

$$
\begin{aligned}
\operatorname{det}\left(N_{E}\right) & =\prod_{k=1}^{p-1} \prod_{l=0}^{p-k-1}\left((p-k) t^{i}-l t^{i}\right) \\
& =t^{((p-1)+(p-2)+\cdots+2+1) i} \prod_{k=1}^{p-1} \prod_{l=0}^{p-k-1}(p-k-l) \\
& =q t^{p(p-1) i / 2}
\end{aligned}
$$

where q is an integer not divisible by p. Consequently,

$$
\begin{aligned}
\operatorname{disc}(R[\beta] / R) & =\left[R C_{p}^{*}: R[\beta]\right]^{2} \operatorname{disc}\left(R C_{p}^{*} / R\right) \\
& =R t^{p(p-1) i} \\
& =\operatorname{disc}\left(H(i)^{*}\right) .
\end{aligned}
$$

Proposition 2.5. The Hopf algebra structure of $H(i)^{*}=R[\beta], \beta^{p}=$ $t^{(p-1) i} \beta$, is given by $\Delta_{K C_{p}^{*}}(\beta)=1 \otimes \beta+\beta \otimes 1, \epsilon_{K C_{p}^{*}}(\beta)=0$, and $S_{K C_{p}^{*}}(\beta)=-\beta$.
Proof. Let $\Delta=\Delta_{K C_{p}^{*}}$. By direct computation, one has

$$
\begin{aligned}
\Delta_{K C_{p}^{*}}(\beta)= & t^{i} \Delta\left(e_{1}\right)+2 t^{i} \Delta\left(e_{2}\right)+\cdots+(p-1) t^{i} \Delta\left(e_{p-1}\right) \\
= & t^{i}\left(\sum_{\sigma=\sigma^{a} \sigma^{b}} \sigma^{a} \otimes \sigma^{b}\right)+2 t^{i}\left(\sum_{\sigma^{2}=\sigma^{a} \sigma^{b}} \sigma^{a} \otimes \sigma^{b}\right) \\
& +\cdots+(p-1) t^{i}\left(\sum_{\sigma^{p-1}=\sigma^{a} \sigma^{b}} \sigma^{a} \otimes \sigma^{b}\right) \\
= & \left(e_{0}+e_{1}+\cdots+e_{p-1}\right) \otimes\left(t^{i} e_{1}+2 t^{i} e_{2}+\cdots+(p-1) t^{i} e_{p-1}\right) \\
& +\left(t^{i} e_{1}+2 t^{i} e_{2}+\cdots+(p-1) t^{i} e_{p-1}\right) \otimes\left(e_{0}+e_{1}+\cdots+e_{p-1}\right) \\
= & 1 \otimes \beta+\beta \otimes 1 .
\end{aligned}
$$

Moreover, as one can check, $\epsilon_{K C_{p}^{*}}(\beta)=0$, and $S_{K C_{p}^{*}}(\beta)=-\beta$.

Let X be an indeterminate. The ring of polynomials $R[X]$ is R-Hopf algebra with comultiplication defined by $\Delta_{R[X]}(X)=1 \otimes X+X \otimes 1$, counit defined by $\epsilon_{R[X]}(X)=0$ and coinverse given by $S_{K[X]}(X)=-X$. The R-Hopf algebra $R[X]$ corresponds to the R-group scheme $\mathbf{G}_{a}=$ Spec $R[X]$, the additive R-group scheme. Let $\psi(X)=X^{p}-t^{(p-1) i} X$. The map $\psi: R[X] \rightarrow R[X]$ is a homomorphism of R-Hopf algebras corresponding to a homomorphism of R-group schemes

$$
\Psi: \mathbf{G}_{a} \rightarrow \mathbf{G}_{a}
$$

defined as follows. For each commutative R-algebra $A, g \in \mathbf{G}_{a}(A)$, $g(X)=a, a \in A$,

$$
\begin{aligned}
\Psi_{A}(g)(X) & =g(\psi(X)) \\
& =g\left(X^{p}-t^{(p-1) i} X\right) \\
& =g(X)^{p}-t^{(p-1) i} g(X) \\
& =a^{p}-t^{(p-1) i} a .
\end{aligned}
$$

Observe that there is an isomorphism of R-Hopf algebras

$$
R[X] /(\psi(X)) \rightarrow H(i)^{*},
$$

defined as $X \mapsto \beta$. Thus the kernel of Ψ is a subgroup scheme represented by $H(i)^{*}$. One has an exact sequence of R-group schemes,

$$
0 \rightarrow \operatorname{Spec} H(i)^{*} \rightarrow \mathbf{G}_{a} \xrightarrow{\Psi} \mathbf{G}_{a} .
$$

In fact, in the faithfully flat topology we can say a bit more.
Proposition 2.6. There is a short exact sequence

$$
\begin{equation*}
0 \rightarrow \text { Spec } H(i)^{*} \rightarrow \mathbf{G}_{a} \xrightarrow{\Psi} \mathbf{G}_{a} \rightarrow 0 \tag{2}
\end{equation*}
$$

in the faithfully flat topology.
Proof. Let A be a commutative R-algebra and let $y \in \mathbf{G}_{a}(A)$ be defined as $y: X \mapsto a, a \in A$. Let α be a root of $\psi(X)-a$ in some ring extension B of A. Then $\varrho: A \rightarrow B$ is a faithfully flat map of R-algebras. Let $y^{\prime}=\varrho y \in \mathbf{G}_{a}(B)$. Now the element $x \in \mathbf{G}_{a}(B)$ defined by $x: X \mapsto \alpha$ is so that $\Psi_{B}(x)=y^{\prime}$. Indeed,

$$
\begin{aligned}
\Psi_{B}(x)(X) & =x(\psi(X)) \\
& =\psi(x(X)) \\
& =\psi(\alpha) \\
& =a .
\end{aligned}
$$

Thus Ψ is an epimorphism in the faithfully flat topology.

We shall employ short exact sequence (2) in what follows.

3. Computation of Extensions

Let $i, j \geq 0$ be integers and let $H(i)^{*}=R\left[\frac{\sigma-1}{t^{i}}\right]^{*}$ and $H(j)^{*}=R\left[\frac{\tau-1}{t^{j}}\right]^{*}$ be R-Hopf orders in $K C_{p}^{*}$ corresponding to R-group schemes $\operatorname{Spec} H(i)^{*}$ and Spec $H(j)^{*}$, respectively. We are interested in computing all short exact sequences of the form

$$
0 \rightarrow \operatorname{Spec} H(i)^{*} \rightarrow \mathbf{G} \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0
$$

where \mathbf{G} is an R-group scheme. In other words, we seek to calculate the group $\operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}\right.$, Spec $\left.H(i)^{*}\right)$ of 1-extensions of Spec $H(i)^{*}$ by Spec $H(j)^{*}$.

Since there are obstructions to this calculation, we proceed indirectly by computing $\operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right), \mathbf{G}_{a}=\operatorname{Spec} R[X]$. Note that over K these extensions appear as

$$
0 \rightarrow \mathbf{G}_{a, K} \rightarrow \mathbf{G}_{a, K} \times_{t} \mathbf{C}_{p, K} \rightarrow \mathbf{C}_{p, K} \rightarrow 0
$$

with $\mathbf{G}_{a, K}=\operatorname{Spec} K[X]$ and $\mathbf{C}_{p, K}=\operatorname{Spec} K C_{p}^{*}$, the constant group scheme of C_{p}. By \times_{t} we mean that the cartesian product is twisted in some manner. The group Ext ${ }^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$ is computed in the usual way "cocycles modulo coboundaries":

$$
\operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)=C\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right) / B\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right),
$$

where

$$
\begin{aligned}
C\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)= & \left\{f \in \operatorname{Nat}\left(\operatorname{Spec} H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}\right)\right. \\
& : f \text { is a cocycle }\} .
\end{aligned}
$$

By cocycle, we mean that for all commutative R-algebras A and $x, y, z \in$ Spec $H(j)^{*}(A)$,

$$
\begin{gather*}
f_{A}(x, y)(X)+f_{A}(x+y, z)(X)=f_{A}(y, z)(X)+f_{A}(x, y+z)(X), \tag{3}\\
f_{A}(x, 0)(X)=0=f_{A}(0, x)(X) . \tag{4}
\end{gather*}
$$

Coboundaries are certain cocycles defined as

$$
B\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)=\left\{\partial g: g \in \operatorname{Nat}\left(\operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}\right), g_{A}(0)=0\right\}
$$

where

$$
\partial g_{A}(x, y)(X)=g_{A}(x)(X)-g_{A}(x+y)(X)+g_{A}(y)(X) .
$$

The problem becomes: how do we characterize these sets of natural transformations? Let us consider coboundaries first. By Yoneda's Lemma, natural transformations $g: \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}$ are in a 1-1 correspondence with R-algebra homomorphisms $\operatorname{Hom}_{R \text {-alg }}\left(R[X], H(j)^{*}\right)$. The R-algebra maps $R[X] \rightarrow H(j)^{*}=R\left[\frac{\tau-1}{t^{j}}\right]^{*}$ are of the form $X \mapsto a$, with $a \in H(j)^{*}$. Since $H(j)^{*} \subseteq \bigoplus_{m=0}^{p-1} R e_{m} \cong R^{p}$, we can write $a \in H(j)^{*}$ as a R-linear combination $a=a_{0} e_{0}+a_{1} e_{1}+\cdots+a_{p-1} e_{p-1}$. Note that $a=\sum_{m=0}^{p-1} a_{m} e_{m} \in R\left[\frac{\tau-1}{t^{j}}\right]^{*}$ if and only if

$$
\left\langle a_{0} e_{0}+a_{1} e_{1}+\cdots+a_{p-1} e_{p-1},\left(\frac{\tau-1}{t^{j}}\right)^{k}\right\rangle \in R
$$

for all $0 \leq k \leq p-1$. That is, $a=\sum_{m=0}^{p-1} a_{m} e_{m} \in R\left[\frac{\tau-1}{t^{j}}\right]^{*}$ if and only if the k th iterated difference d^{k} satisfies

$$
d^{k}(a)=\sum_{m=0}^{k}\binom{k}{m}(-1)^{m} a_{k-m} \in t^{k j} R,
$$

for all $0 \leq k \leq p-1$.
So coboundaries are cocycles of the form ∂g where $g: \operatorname{Spec} H(j)^{*} \rightarrow$ \mathbf{G}_{a} is a natural transformation and g corresponds to an algebra map $R[X] \rightarrow H(j)^{*}$ given by $X \mapsto a=\sum_{m=0}^{p-1} a_{m} e_{m} \in H(j)^{*}$ with $a_{0}=0$.

We can characterize cocycles in a similar way. Cocycles consist of natural transformations

$$
f \in \operatorname{Nat}\left(\operatorname{Spec} H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}\right)
$$

that satisfy the cocycle conditions (3), (4). By Yoneda's Lemma, these natural transformations are in a $1-1$ correspondence with R-algebra maps

$$
R[X] \rightarrow H(j)^{*} \otimes_{R} H(j)^{*}
$$

of the form $X \mapsto b$, with $b \in H(j)^{*} \otimes_{R} H(j)^{*}$. Since

$$
H(j)^{*} \otimes_{R} H(j)^{*} \subseteq R C_{p}^{*} \otimes_{R} R C_{p}^{*}=\bigoplus_{m=0}^{p-1} R e_{m} \otimes_{R} \bigoplus_{n=0}^{p-1} R e_{n}
$$

and $\left\{e_{m} \otimes e_{n}\right\}$ is an R-basis for $R C_{p}^{*} \otimes_{R} R C_{p}^{*}$, the element b can be written as an R-linear combination of the $e_{m} \otimes e_{n}$. Thus the algebra maps are given as

$$
X \mapsto b=\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right) \in H(j)^{*} \otimes_{R} H(j)^{*},
$$

with $a_{m, n} \in R$. Note that the element $b=\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right)$, $a_{m, n} \in R$, is in $H(j)^{*} \otimes_{R} H(j)^{*}$ if and only if the double iterated difference $d^{k, k^{\prime}}$ satisfies

$$
d^{k, k^{\prime}}(b)=\sum_{m=0}^{k} \sum_{n=0}^{k^{\prime}}\binom{k}{m}\binom{k^{\prime}}{n}(-1)^{m+n} a_{k-m, k^{\prime}-n} \in t^{\left(k+k^{\prime}\right) i} R,
$$

for all $0 \leq k, k^{\prime} \leq p-1$.
Let $f: \operatorname{Spec} H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}$ be a natural transformation corresponding to the algebra map $\phi_{f}: R[X] \rightarrow H(j)^{*} \otimes_{R} H(j)^{*}$, defined as

$$
\phi_{f}: X \mapsto b=\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right),
$$

$a_{m, n} \in R$. The group Spec $H(j)^{*}(R)$ consists of p elements

$$
x_{m}: \beta \mapsto m t^{j},
$$

$0 \leq m \leq p-1$, and hence, $\operatorname{Spec} H(j)^{*}(R)=\mathbb{Z} / p \mathbb{Z}$. Also, $\mathbf{G}_{a}(R)=R$. Thus f_{R} is a function

$$
f_{R}: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow R
$$

Let $x_{m}, x_{n} \in \operatorname{Spec} H(j)^{*}(R)$. Then

$$
\begin{aligned}
f_{R}\left(x_{m}, x_{n}\right)(X) & =\left(x_{m} \otimes x_{n}\right)\left(\phi_{f}(X)\right) \\
& =\left(x_{m} \otimes x_{n}\right)\left(\sum_{m^{\prime}=0}^{p-1} \sum_{n^{\prime}=0}^{p-1} a_{m^{\prime}, n^{\prime}}\left(e_{m^{\prime}} \otimes e_{n^{\prime}}\right)\right) \\
& =a_{m, n} .
\end{aligned}
$$

In this way, f determines a function

$$
\hat{f}: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow R
$$

defined as $\hat{f}\left(x_{m}, x_{n}\right)=a_{m, n}$.
Next, let $g: \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}$ be a natural transformation corresponding to the algebra map $\phi_{g}: R[X] \rightarrow H(j)^{*}$, defined as

$$
\phi_{g}: X \mapsto a=\sum_{m=0}^{p-1} a_{m} e_{m},
$$

$a_{m} \in R$. Let $x_{m} \in \operatorname{Spec} H(j)^{*}(R)$. Then

$$
\begin{aligned}
g_{R}\left(x_{m}\right)(X) & =x_{m}\left(\phi_{g}(X)\right) \\
& =x_{m}\left(\sum_{m^{\prime}=0}^{p-1} a_{m^{\prime}} e_{m^{\prime}}\right) \\
& =a_{m}
\end{aligned}
$$

And so, g determines a function

$$
\hat{g}: \mathbb{Z} / p \mathbb{Z} \rightarrow R
$$

defined as $\hat{g}\left(x_{m}\right)=a_{m}$. In what follows we consider the familiar construction of extensions of R by $\mathbb{Z} / p \mathbb{Z}$,

$$
\operatorname{Ext}^{1}(\mathbb{Z} / p \mathbb{Z}, R)=C(\mathbb{Z} / p \mathbb{Z}, R) / B(\mathbb{Z} / p \mathbb{Z}, R)
$$

where $C(\mathbb{Z} / p \mathbb{Z}, R)$ is the set of all functons $f: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow R$ that satisfy

$$
\begin{gathered}
f(l, m)+f(l+m, n)=f(m, n)+f(l, m+n), \\
f(m, 0)=0=f(0, n)
\end{gathered}
$$

for all $l, m, n \in \mathbb{Z} / p \mathbb{Z}$, (cocycles) and $B(\mathbb{Z} / p \mathbb{Z}, R)$ consists of those cocycles of the form ∂g for some function $g: \mathbb{Z} / p \mathbb{Z} \rightarrow R, g(0)=0$, where

$$
\partial g(m, n)=g(m)-g(m+n)+g(n),
$$

for all $m, n \in \mathbb{Z} / p \mathbb{Z}$.
Proposition 3.1. Let $f \in \operatorname{Nat}\left(\operatorname{Spec} H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}\right)$. Then f is a cocycle in $C\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$ if and only if \hat{f} is a cocycle in $C(\mathbb{Z} / p \mathbb{Z}, R)$.
Proof. Suppose $f: \operatorname{Spec} H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}$ is a cocycle, with corresponding algebra homomorphism

$$
\phi_{f}: X \mapsto b=\sum_{m^{\prime}=0}^{p-1} \sum_{n^{\prime}=0}^{p-1} a_{m^{\prime}, n^{\prime}}\left(e_{m^{\prime}} \otimes e_{n^{\prime}}\right) .
$$

Then for all $x_{l}, x_{m}, x_{n} \in \operatorname{Spec} H(j)^{*}(R)$,
$f_{R}\left(x_{l}, x_{m}\right)(X)+f_{R}\left(x_{l}+x_{m}, x_{n}\right)(X)=f_{R}\left(x_{m}, x_{n}\right)(X)+f_{R}\left(x_{l}, x_{m}+x_{n}\right)(X)$.
Consequently, for all $l, m, n, 0 \leq l, m, n \leq p-1$,

$$
a_{l, m}+a_{l+m, n}=a_{m, n}+a_{l, m+n},
$$

where $m+n$ and $l+m$ are taken modulo p. Thus

$$
\hat{f}\left(x_{l}, x_{m}\right)+\hat{f}\left(x_{l+m}, x_{n}\right)=\hat{f}\left(x_{m}, x_{n}\right)+\hat{f}\left(x_{l}, x_{m+n}\right) .
$$

Moreover,

$$
f_{R}\left(x_{l}, 0\right)(X)=0=f_{R}\left(0, x_{m}\right)(X)
$$

for all $x_{l}, x_{m} \in \operatorname{Spec} H(j)^{*}(R)$. Thus for all $0 \leq l, m \leq p-1$,

$$
a_{l, 0}=0=a_{0, m},
$$

and so,

$$
\hat{f}\left(x_{l}, 0\right)=0=\hat{f}\left(0, x_{m}\right) .
$$

It follows that \hat{f} is in $C(\mathbb{Z} / p \mathbb{Z}, R)$.
For the converse, suppose that $\hat{f}: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow R$ is a cocycle obtained from the natural transformation $f: \operatorname{Spec} H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow$
\mathbf{G}_{a}. Then for all $0 \leq l, m, n \leq p-1$ one has

$$
a_{l, m}+a_{l+m, n}=a_{l, m+n}+a_{m, n},
$$

where $m+n$ and $l+m$ are taken modulo p. Thus,

$$
\begin{aligned}
& \sum_{l=0}^{p-1} \sum_{m=0}^{p-1} \sum_{n=0}^{p-1}\left(a_{l, m}+a_{l+m, n}\right)\left(e_{l} \otimes e_{m} \otimes e_{n}\right) \\
& \quad=\sum_{l=0}^{p-1} \sum_{m=0}^{p-1} \sum_{n=0}^{p-1}\left(a_{l, m+n}+a_{m, n}\right)\left(e_{l} \otimes e_{m} \otimes e_{n}\right) .
\end{aligned}
$$

Consequently, with $\Delta=\Delta_{H(j)^{*}}$,

$$
\begin{aligned}
& \left(\sum_{l=0}^{p-1} \sum_{m=0}^{p-1} a_{l, m}\left(e_{l} \otimes e_{m} \otimes 1\right)\right)+\left(\sum_{k=0}^{p-1} \sum_{n=0}^{p-1} a_{k, n}\left(\Delta\left(e_{k}\right) \otimes e_{n}\right)\right) \\
& =\left(\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(1 \otimes e_{m} \otimes e_{n}\right)\right)+\left(\sum_{l=0}^{p-1} \sum_{k=0}^{p-1} a_{l, k}\left(e_{l} \otimes \Delta\left(e_{k}\right)\right)\right) .
\end{aligned}
$$

Thus, for any R-algebra A and $x, y, z \in \operatorname{Spec} H(j)^{*}(A)$.

$$
\begin{aligned}
& (x \otimes y \otimes z)\left(\sum_{l=0}^{p-1} \sum_{m=0}^{p-1} a_{l, m}\left(e_{l} \otimes e_{m} \otimes 1\right)\right)+(x \otimes y \otimes z)\left(\sum_{k=0}^{p-1} \sum_{n=0}^{p-1} a_{k, n}\left(\Delta\left(e_{k}\right) \otimes e_{n}\right)\right) \\
& \quad=(x \otimes y \otimes z)\left(\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(1 \otimes e_{m} \otimes e_{n}\right)\right)+(x \otimes y \otimes z)\left(\sum_{l=0}^{p-1} \sum_{k=0}^{p-1} a_{l, k}\left(e_{l} \otimes \Delta\left(e_{k}\right)\right)\right),
\end{aligned}
$$

which implies

$$
(x \otimes y) \phi_{f}(X)+((x+y) \otimes z) \phi_{f}(X)=(y \otimes z) \phi_{f}(X)+(x \otimes(y+z)) \phi_{f}(X) .
$$

Thus

$$
f_{A}(x, y)(X)+f_{A}(x+y, z)(X)=f_{A}(y, z)(X)+f_{A}(x, y+z)(X)
$$

Now, suppose $0=a_{m^{\prime}, 0}$, for $m^{\prime}=0, \ldots, p-1$, and let $x \in \operatorname{Spec} H(j)^{*}(A)$. Then

$$
\begin{aligned}
0 & =\left(x \otimes \lambda_{A} \epsilon_{H(j)}\right)\left(\sum_{m^{\prime}=0}^{p-1} \sum_{n^{\prime}=0}^{p-1} a_{m^{\prime}, n^{\prime}}\left(e_{m^{\prime}} \otimes e_{n^{\prime}}\right)\right) \\
& =(x \otimes 0)\left(\sum_{m^{\prime}=0}^{p-1} \sum_{n^{\prime}=0}^{p-1} a_{m^{\prime}, n^{\prime}}\left(e_{m^{\prime}} \otimes e_{n^{\prime}}\right)\right) \\
& =(x \otimes 0) \phi_{f}(X) \\
& =f_{A}(x, 0)(X) .
\end{aligned}
$$

In a similar manner, the condition $0=a_{0, n}$, for $n=0, \ldots, p-1$, yields $f_{A}(0, y)(X)=0$ for $y \in \operatorname{Spec} H(j)^{*}(A)$. Consequently, f satisfies the cocycle conditions (3), (4).

Proposition 3.2. Let $f \in C\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$. Then $f \in B\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$ if and only if $\hat{f}=\partial \hat{g}$ for some natural transformation $g: \operatorname{Spec} H(j)^{*} \rightarrow$ \mathbf{G}_{a} with $g_{A}(0)=0$ for all commutative R-algebras A.
Proof. Let $f \in B\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$. Then there exists a natural transformation $g: \operatorname{SpH}(j)^{*} \rightarrow \mathbf{G}_{a}$ for which

$$
\begin{equation*}
f_{R}\left(x_{m}, x_{n}\right)(X)=g_{R}\left(x_{m}\right)(X)-g_{R}\left(x_{m}+x_{n}\right)(X)+g_{R}\left(x_{n}\right)(X) \tag{5}
\end{equation*}
$$

and $g_{A}(0)=0$ for all commutative R-algebras A. Let

$$
\phi_{f}: X \rightarrow \sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right)
$$

and $\phi_{g}: X \mapsto \sum_{m=0}^{p-1} a_{m}$ denote the algebra maps corresponding to f, g, respectively. From (5) we obtain

$$
a_{m, n}=a_{m}-a_{m+n}+a_{m},
$$

for all $0 \leq m, n \leq p-1(m+n$ taken modulo p.) It follows that $\hat{f}=\partial \hat{g}$.
For the converse suppose that $\hat{f}=\partial \hat{g}$ for some natural transformation $g: \operatorname{SpH}(j)^{*} \rightarrow \mathbf{G}_{a}$ with $g_{A}(0)=0$. Then

$$
a_{m, n}=a_{m}-a_{m+n}+a_{n},
$$

for $0 \leq m, n \leq p-1(m+n$ taken modulo p.) Consequently,

$$
\begin{align*}
\sum_{m, n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right) & =\sum_{m, n=0}^{p-1}\left(a_{m}-a_{m+n}+a_{n}\right)\left(e_{m} \otimes e_{n}\right) \\
& =\sum_{m=0}^{p-1} a_{m}\left(e_{m} \otimes 1\right)-\sum_{k=0}^{p-1} a_{k} \Delta_{H(j)^{*}}\left(e_{k}\right)+\sum_{n=0}^{p-1} a_{n}\left(1 \otimes e_{n}\right) . \tag{6}
\end{align*}
$$

Let $x, y \in \operatorname{Spec} H(j)^{*}(A)$. Then (6) implies that

$$
\begin{aligned}
& (x \otimes y) \sum_{m, n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right) \\
& =(x \otimes y) \sum_{m=0}^{p-1} a_{m}\left(e_{m} \otimes 1\right)-(x \otimes y) \sum_{k=0}^{p-1} \Delta_{H(j)^{*}}\left(a_{k} e_{k}\right)+(x \otimes y) \sum_{n=0}^{p-1} a_{n}\left(1 \otimes e_{n}\right),
\end{aligned}
$$

and so,

$$
(x \otimes y) \phi_{f}(X)=x\left(\phi_{g}(X)\right)-(x+y)\left(\phi_{g}(X)\right)+y\left(\phi_{g}(X)\right) .
$$

Thus

$$
f_{A}(x, y)(X)=g_{A}(x)(X)-g_{A}(x+y)(X)+g_{A}(y)(X),
$$

and so, $f=\partial g$.

Define:

$$
\begin{aligned}
\hat{C}= & \{r \in C(\mathbb{Z} / p \mathbb{Z}, R): r=\hat{f} \text { for some natural transformation } \\
& \left.f: \operatorname{Spec} H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}\right\} . \\
\hat{B}= & \left\{r \in \hat{C}: r=\partial \hat{g} \text { for some natural transformation } g: \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}\right. \\
& \text { with } \left.g_{A}(0)=0 \text { for all commutative } R \text {-algebras } A\right\} .
\end{aligned}
$$

Proposition 3.3. $\operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)=\hat{C} / \hat{B}$.
Proof. This follows from Proposition 3.1 and Proposition 3.2.
A cocycle in $r: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow R$ in \hat{C} will be given as the $p \times p$ matrix

$$
M_{r}=\left(\begin{array}{ccccc}
a_{0,0} & a_{0,1} & \cdots & \cdots & a_{0, p-1} \\
a_{1,0} & a_{1,1} & \cdots & \cdots & a_{1, p-1} \\
\vdots & \vdots & & & \vdots \\
& & & & \\
a_{p-1,0} & a_{p-1,1} & \cdots & \cdots & a_{p-1, p-1}
\end{array}\right) .
$$

with $r\left(x_{m}, x_{n}\right)=a_{m, n}$.
Proposition 3.4. A cocycle $r \in \hat{C}$ is congruent modulo \hat{B} to a cocycle of the form

$$
M_{w}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & & \cdots \\
0 & 0 \\
0 & 0 & \cdots & & 0 \\
0 & w & w & \\
\vdots & 0 & \cdots & 0 & w \\
\vdots & \vdots & & & \\
\vdots & 0 & & & \vdots \\
0 & w & w & & \cdots \\
w
\end{array}\right)
$$

for some $w \in R$.
Proof. Let $r \in \hat{C}$. Then $r=\hat{f}$ for some natural transformation f : Spec $H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}$. The matrix of \hat{f} has the form

$$
M_{\hat{f}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
0 & a_{1,1} & a_{1,2} & \cdots & a_{1, p-1} \\
0 & a_{2,1} & a_{2,2} & \cdots & a_{2, p-1} \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & & \vdots \\
0 & a_{p-1,1} & a_{p-1,2} & \cdots & a_{p-1, p-1}
\end{array}\right) \text {, }
$$

for elements $a_{m, n} \in R . M_{\hat{f}}$ is symmetric. Since

$$
\begin{gathered}
\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right) \in H(j)^{*} \otimes H(j)^{*}, \\
\left\langle\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right),(\tau-1)^{k} \otimes(\tau-1)^{k^{\prime}}\right\rangle \in t^{\left(k+k^{\prime}\right) j} R,
\end{gathered}
$$

for $0 \leq k, k^{\prime} \leq p-1$. In the second row of $M_{\hat{f}}$, let l be the smallest integer $\leq p-2$, for which $a_{1, l} \neq 0$. Now,

$$
\begin{equation*}
\left\langle\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} a_{m, n}\left(e_{m} \otimes e_{n}\right), \tau-1 \otimes(\tau-1)^{l},\right\rangle=a_{1, l} \in t^{(1+l) j} R . \tag{7}
\end{equation*}
$$

Consider the element $c=\sum_{m=0}^{l+1} c_{m} e_{m}$ with

$$
c_{m}= \begin{cases}0 & \text { if } 0 \leq m \leq l \\ a_{1, l} & \text { if } m=l+1\end{cases}
$$

Now, $d^{k}(c) \in t^{k j} R$ for $0 \leq k \leq l+1$. And so, c satisfies the first $l+2$ conditions for membership in $H(j)^{*}$. Note that c has only $l+2$ components. However, one can find elements $c_{m}, m=l+2, l+3, \ldots, p-$ 1 , so that $c=\sum_{m=0}^{p-1} c_{m} e_{m} \in H(j)^{*}$. Now, c corresponds to a natural transformation

$$
s: \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}, \quad s_{A}(0)=0,
$$

and a function $\hat{s}: \mathbb{Z} / p \mathbb{Z} \rightarrow R$. Thus $\partial \hat{s}$ is an element of \hat{B} and $\hat{f}+\partial \hat{s}$ has matrix whose second row satisfies

$$
a_{1,0}=a_{1,1}=\cdots=a_{1, l}=0 .
$$

Repeating this process, we find that \hat{f} is congruent modulo \hat{B} to a cocycle (also denoted as \hat{f}) with matrix

$$
M_{\hat{f}}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & a_{1, p-1} \\
0 & 0 & a_{2,2} & \cdots & a_{2, p-2} & a_{2, p-1} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & a_{p-2,2} & \cdots & & a_{p-2, p-1} \\
0 & a_{p-1,1} & a_{p-1,2} & \cdots & a_{p-1, p-2} & a_{p-1, p-1}
\end{array}\right) .
$$

The cocycle conditions (3), (4) then imply that \hat{f} is congruent modulo \hat{B} to a cocycle in \hat{C} with matrix

$$
M_{w}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & w \\
0 & \cdots & 0 & w & w \\
\vdots & & \vdots & & \vdots \\
0 & w & w & \cdots & w
\end{array}\right),
$$

for $w \in R$, cf. [3, Theorem 3.4], [4, Proposition 8.2.3].

Proposition 3.5. $\operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right) \cong R t^{p j}$.
Proof. By Proposition 3.4, every coset in \hat{C} / \hat{B} can be represented by a cocycle of the form M_{w} for some $w \in R$. Now, a matrix of the form M_{w} corresponds to a cocycle in \hat{C} if and only if $d^{k, k^{\prime}}\left(M_{w}\right) \in R t^{\left(k+k^{\prime}\right) j}$ for all $0 \leq k, k^{\prime} \leq p-1$. And one finds that $d^{k, k^{\prime}}\left(M_{w}\right) \in R t^{\left(k+k^{\prime}\right) j}$ for all $0 \leq k, k^{\prime} \leq p-1$, if and only if $w \in R t^{p j}$.

Now, suppose that the cocycle $r \in \hat{C}$ with matrix M_{w} is of the form $r=\partial \hat{g}$ for some natural transformation $g: \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}$, $g_{A}(0)=0$. Let $\phi_{g}: X \mapsto a=\sum_{m=0} a_{m} e_{m} \in H(j)^{*}$ be the algebra map corresponding to g. Now, $r=\partial \hat{g}$ implies that

$$
\begin{aligned}
a_{1}+a_{1}-a_{2} & =0 \\
a_{1}+a_{2}-a_{3} & =0 \\
a_{1}+a_{3}-a_{4} & =0 \\
\vdots & \\
a_{1}+a_{p-2}-a_{p-1} & =0 \\
a_{1}+a_{p-1}-a_{0} & =w,
\end{aligned}
$$

hence $w=0$.

Let

$$
K \otimes_{R}-: \operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right) \rightarrow \operatorname{Ext}^{1}\left(\operatorname{Spec} K C_{p}^{*}, \mathbf{G}_{a, K}\right)
$$

be the maps that takes the extension

$$
0 \rightarrow \mathbf{G}_{a} \rightarrow \mathbf{G} \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0
$$

to its "generic" extension over K :

$$
0 \rightarrow \mathbf{G}_{a, K} \rightarrow K \otimes_{R} \mathbf{G} \rightarrow \operatorname{Spec} K C_{p}^{*} \rightarrow 0
$$

The kernel of $K \otimes_{R}$ - is the group of generically trivial extensions, denoted as $\operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$. These are the extensions in $\operatorname{Ext}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$ that over K appear as

$$
0 \rightarrow \mathbf{G}_{a, K} \rightarrow \mathbf{G}_{a, K} \times \mathbf{C}_{p} \rightarrow \mathbf{C}_{p} \rightarrow 0
$$

Proposition 3.6. An element of $\operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)$ is of the form

$$
0 \rightarrow \mathbf{G}_{a} \rightarrow \operatorname{Spec} R[X+a, \beta] \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0,
$$

where $a=\eta e_{1}+2 \eta e_{2}+\cdots+(p-1) \eta e_{p-1}$ for some $\eta \in K$ and $\beta=$ $t^{j} e_{1}+2 t^{j} e_{2}+\cdots+(p-1) t^{j} e_{p-1}$.

Proof. Let

$$
0 \rightarrow \mathbf{G}_{a} \rightarrow \mathbf{G} \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0
$$

denote a generically trivial extension corresponding to the cocycle f : Spec $H(j)^{*} \times \operatorname{Spec} H(j)^{*} \rightarrow \mathbf{G}_{a}$ whose matrix is M_{w}. The corresponding algebra map is $\phi_{f}: X \rightarrow M_{w}$. As a group scheme, $\mathbf{G}=\mathbf{G}_{a} \times \operatorname{Spec} H(j)^{*}$ with the multiplication twisted by the cocycle f. Over K, M_{w} corresponds to a cocycle

$$
K \otimes f: \operatorname{Spec} K H(j)^{*} \times \operatorname{Spec} K H(j)^{*} \rightarrow \operatorname{Spec} K[X]
$$

in $C\left(\operatorname{Spec} K H(j)^{*}, \operatorname{Spec} K[X]\right)$ that is trivial. Thus, $K \otimes f=\partial g$, for some natural transformation $g: \operatorname{Spec} K H(j)^{*} \rightarrow \operatorname{Spec} K[X]$ and g corresponds to an algebra map $\phi_{g}: X \mapsto a$, for some $a=\sum_{m=0}^{p-1} a_{m} e_{m} \in$ $K H(j)^{*}$. As shown above, this implies that $w=0$. Moreover,

$$
a=\eta e_{1}+2 \eta e_{2}+\cdots+(p-1) \eta e_{p-1},
$$

for some $\eta \in K$ (actually, $\eta=a_{1}$.)
There is an isomorphism of K-group schemes

$$
g^{\prime}: \mathbf{G}_{a, K} \times \operatorname{Spec} K H(j)^{*} \rightarrow \operatorname{Spec} K[X] \times \operatorname{Spec} K C_{p}^{*}
$$

defined by

$$
g^{\prime}(x, y)=(x+g(y), y),
$$

for $x \in \mathbf{G}_{a, K}, y \in \operatorname{Spec} K H(j)^{*}$. The isomorphism g^{\prime} makes the following diagram commute:

$$
0 \rightarrow \operatorname{Spec} K[X] \quad \rightarrow \quad \mathbf{G}_{a, K} \times \operatorname{Spec} K H(j)^{*} \quad \rightarrow \operatorname{Spec} K H(j)^{*} \rightarrow 0
$$

$$
\begin{array}{cccc}
\| & g^{\prime} \downarrow & \| \\
0 & \rightarrow & & \\
\text { Spec } K[X]
\end{array} \rightarrow \begin{gathered}
\text { Spec } K[X] \times \operatorname{Spec} K C_{p}^{*}
\end{gathered} \rightarrow \quad \operatorname{Spec} K C_{p}^{*} \quad \rightarrow \quad 0
$$

The Hopf algebra isomorphism corresponding to g^{\prime} is

$$
\psi: K[X] \otimes_{K} K C_{p}^{*} \rightarrow K[X] \otimes_{K} K H(j)^{*},
$$

defined as

$$
\begin{gathered}
X \otimes 1 \mapsto X \otimes 1+1 \otimes\left(\eta e_{1}+2 \eta e_{2}+\cdots+(p-1) \eta e_{p-1}\right), \\
1 \otimes \beta \mapsto 1 \otimes \beta
\end{gathered}
$$

with $K C_{p}^{*}=K[\beta], \beta^{p}=t^{(p-1) j} \beta$,

$$
\beta=t^{j} e_{1}+2 t^{j} e_{2}+\cdots+(p-1) t^{j} e_{p-1} .
$$

If we restrict the map ψ to $R[X] \otimes_{R} H(j)^{*}$ its image is

$$
R[X \otimes 1+1 \otimes a, 1 \otimes \beta] \cong R[X+a, \beta]
$$

Thus

$$
0 \rightarrow \operatorname{Spec} R[X] \rightarrow \operatorname{Spec} R[X+a, \beta] \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0
$$

is the generically trivial extension corresponding to the cocycle f.

Let $\left\{e_{m, n}\right\}, 0 \leq m, n \leq p-1$, be the basis for $K\left(C_{p} \times C_{p}\right)^{*}$ that is dual to the basis $\left\{\left(\sigma^{c}, \tau^{d}\right)\right\}, 0 \leq c, d \leq p-1$ for $K\left(C_{p} \times C_{p}\right)$. We have $e_{m, n}\left(\left(\sigma^{a}, \tau^{b}\right)\right)=\delta_{m, a} \delta_{n, b}$. Equivalently, $\left\langle e_{m, n},\left(\sigma^{a}, \tau^{b}\right)\right\rangle=\delta_{m, a} \delta_{n, b}$, where $\langle\rangle:, K\left(C_{p} \times C_{p}\right)^{*} \times K\left(C_{p} \times C_{p}\right) \rightarrow K$ is the duality map.
Proposition 3.7. An element of Ext ${ }_{\text {gt }}^{1}\left(\operatorname{Spec} H(j)^{*}\right.$, Spec $\left.H(i)^{*}\right)$ can be written in the form

$$
0 \rightarrow \text { Spec } H(i)^{*} \rightarrow \text { Spec } R[\gamma+a, \beta] \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0
$$

where

$$
\begin{gathered}
a=\eta\left(e_{0,1}+e_{1,1}+\cdots+e_{p-1,1}\right)+2 \eta\left(e_{0,2}+e_{1,2}+\cdots+e_{p-1,2}\right) \\
+\cdots+(p-1) \eta\left(e_{0, p-1}+e_{1, p-1}+\cdots+e_{p-1, p-1}\right)
\end{gathered}
$$

$$
\beta=t^{j}\left(e_{0,1}+e_{1,1}+\cdots+e_{p-1,1}\right)+2 t^{j}\left(e_{0,2}+e_{1,2}+\cdots+e_{p-1,2}\right)
$$

$$
+\cdots+(p-1) t^{j}\left(e_{0, p-1}+e_{1, p-1}+\cdots+e_{p-1, p-1}\right)
$$

$$
\begin{gathered}
\gamma=t^{i}\left(e_{1,0}+e_{1,1}+\cdots+e_{1, p-1}\right)+2 t^{i}\left(e_{2,0}+e_{2,1}+\cdots+e_{2, p-1}\right) \\
+\cdots+(p-1) t^{i}\left(e_{p-1,0}+e_{p-1,1}+\cdots+e_{p-1, p-1}\right) .
\end{gathered}
$$

Proof. Recall the short exact sequence in the faithfully flat topology (Proposition 2.6)

$$
\begin{equation*}
0 \rightarrow \operatorname{Spec} H(i)^{*} \rightarrow \mathbf{G}_{a} \xrightarrow{\Psi} \mathbf{G}_{a} \rightarrow 0 \tag{8}
\end{equation*}
$$

with Ψ given by the Hopf map

$$
\psi: R[X] \rightarrow R[X]
$$

$\psi(X)=X^{p}-t^{(p-1) i} X$. Applying (8) in the long exact sequence in cohomology yields the isomorphism

$$
\operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}, \operatorname{Spec} H(i)^{*}\right)
$$

$$
\begin{equation*}
\cong \operatorname{ker}\left(\operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right) \xrightarrow{\Psi} \operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}, \mathbf{G}_{a}\right)\right), \tag{9}
\end{equation*}
$$

cf. [3, Corollary 3.6b]. From the isomorphism (9) we conclude that an arbitrary element of $\operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}\right.$, $\left.\operatorname{Spec} H(i)^{*}\right)$ can be written as

$$
\begin{align*}
0 \rightarrow \operatorname{Spec}(R[X] /(\psi(X))) & \rightarrow \operatorname{Spec}(R[X+a, \beta] /(\psi(X))) \\
& \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0 \tag{10}
\end{align*}
$$

Over K, short exact sequence (10) appears as

$$
0 \rightarrow \operatorname{Spec} K C_{p}^{*} \rightarrow \operatorname{Spec} K\left(C_{p} \times C_{p}\right)^{*} \rightarrow \operatorname{Spec} K C_{p}^{*} \rightarrow 0
$$

And so, (10) is now

$$
\begin{equation*}
0 \rightarrow \operatorname{Spec} R[\alpha] \rightarrow \operatorname{Spec} R[\gamma+a, \beta] \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0 \tag{11}
\end{equation*}
$$

where

$$
\begin{gathered}
a=\eta\left(e_{0,1}+e_{1,1}+\cdots+e_{p-1,1}\right)+2 \eta\left(e_{0,2}+e_{1,2}+\cdots+e_{p-1,2}\right) \\
+\cdots+(p-1) \eta\left(e_{0, p-1}+e_{1, p-1}+\cdots+e_{p-1, p-1}\right) \\
\beta=t^{j}\left(e_{0,1}+e_{1,1}+\cdots+e_{p-1,1}\right)+2 t^{j}\left(e_{0,2}+e_{1,2}+\cdots+e_{p-1,2}\right) \\
+\cdots+(p-1) t^{j}\left(e_{0, p-1}+e_{1, p-1}+\cdots+e_{p-1, p-1}\right) \\
\\
\gamma=t^{i}\left(e_{1,0}+e_{1,1}+\cdots+e_{1, p-1}\right)+2 t^{i}\left(e_{2,0}+e_{2,1}+\cdots+e_{2, p-1}\right) \\
\quad+\cdots+(p-1) t^{i}\left(e_{p-1,0}+e_{p-1,1}+\cdots+e_{p-1, p-1}\right) .
\end{gathered}
$$

Let

$$
\begin{gathered}
H(i, j, \mu)=R\left[\frac{(\sigma, 1)-(1,1)}{t^{i}}, \frac{(\sigma, 1)^{[-\mu]}(1, \tau)-(1,1)}{t^{j}}\right], \\
(\sigma, 1)^{[-\mu]}=\sum_{m=0}^{p-1}\binom{-\mu}{m}((\sigma, 1)-(1,1))^{m},
\end{gathered}
$$

$\operatorname{ord}(\mu) \geq-i+(j / p)$, be the Elder order in $K\left(C_{p} \times C_{p}\right)$, given in the Introduction.

Proposition 3.8. Let $\eta=\mu t^{i}$. Then $H(i, j, \mu)^{*}=R[\gamma+a, \beta]$.

Proof. One shows directly that $\langle R[\gamma+a, \beta], H(i, j, \mu)\rangle \subseteq R$, thus

$$
R[\gamma+a, \beta] \subseteq H(i, j, \mu)^{*} .
$$

Moreover, $\operatorname{disc}(R[\gamma+a, \beta] / R)=\operatorname{disc}\left(H(i, j, \mu)^{*} / R\right)$, hence $H(i, j, \mu)^{*}=$ $R[\gamma+a, \beta]$.

Proposition 3.9. Let H be an arbitrary R-Hopf order in $K\left(C_{p} \times C_{p}\right)$ that induces the short exact sequence

$$
R \rightarrow H(i) \rightarrow H \rightarrow H(j) \rightarrow R
$$

Then H is an Elder order in $K\left(C_{p} \times C_{p}\right)$.
Proof. Taking duals yields the short exact sequence

$$
R \rightarrow H(j)^{*} \rightarrow H^{*} \rightarrow H(i)^{*} \rightarrow R,
$$

and applying Spec - gives the short exact sequence

$$
0 \rightarrow \operatorname{Spec} H(i)^{*} \rightarrow \operatorname{Spec} H^{*} \rightarrow \operatorname{Spec} H(j)^{*} \rightarrow 0,
$$

which is an element of $\operatorname{Ext}_{g t}^{1}\left(\operatorname{Spec} H(j)^{*}\right.$, Spec $\left.H(i)^{*}\right)$. By Proposition 3.7, H^{*} is of the form $R[\gamma+a, \beta]$ for γ, β as above and

$$
\begin{gathered}
a=\eta\left(e_{0,1}+e_{1,1}+\cdots+e_{p-1,1}\right)+2 \eta\left(e_{0,2}+e_{1,2}+\cdots+e_{p-1,2}\right) \\
+\cdots+(p-1) \eta\left(e_{0, p-1}+e_{1, p-1}+\cdots+e_{p-1, p-1}\right),
\end{gathered}
$$

for some $\eta \in K$. Since $R[\gamma+a, \beta]$ is an R-algebra, $a^{p} \in R[\beta]=H(j)^{*}$. Hence

$$
\operatorname{ord}\left(\eta^{p}\right)=p \operatorname{ord}(\eta) \geq j
$$

and so $\operatorname{ord}(\eta) \geq j / p$. Let $\mu=\eta / t^{i}$. Then

$$
\operatorname{ord}\left(\mu t^{i}\right)=\operatorname{ord}(\eta) \geq j / p,
$$

and so, $\operatorname{ord}(\mu) \geq-i+(j / p)$. Now the Elder order $H(i, j, \mu)$ exists and $H(i, j, \mu)^{*}=R[\gamma+a, \beta]$. Consequently, $H(i, j, \mu)^{*}=H^{*}$, and so $H=H(i, j, \mu)$.

References

[1] L. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, American Mathematical Society, Mathematical Surveys and Monographs, 80, (2000).
[2] G. Elder, Scaffolds, Galois module structure and Hopf orders, preprint, (2012).
[3] C. Greither, Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z., 210, 37-67, (1992).
[4] R. G. Underwood, An Introduction to Hopf Algebras, Springer, New York, (2011).

