# Hopf orders in Hopf algebras with trivial Verschiebung 

Alan Koch

Agnes Scott College

June, 2015

## Overview, Assumptions

Let $R$ be a complete discrete valuation ring of (equal) characteristic $p$, $K=$ Frac $R$.
We describe $R$-Hopf orders in a class of $K$-Hopf algebras $H$ which are generated as $K$-algebras by their primitive elements $P(H)$.
[Some of this will work for $R=\mathbb{F}_{q}[t], K=\mathbb{F}_{q}(t), q$ a power of $p$.]
These include orders in:

- $K[t] /\left(t^{p^{n}}\right)$, the monogenic local-local Hopf algebra of rank $p^{n}$
- $(K \Gamma)^{*}, \Gamma$ an elementary abelian $p$-group


## Assumptions

- All group schemes are affine, flat, commutative, $p$-power rank.
- All Hopf algebras are abelian (commutative, cocommutative), free over its base ring, and of $p$-power rank.


## Outline

(9) Dieudonné Module Theory
(2) More Linear Algebra
(3) Hopf Orders
(4) Rank $p$ Hopf orders
(5) Rank $p^{n}, n$ usually 2
(6) What to do now

## Geometric Interpretation

For now, let $R$ be any $\mathbb{F}_{p}$-algebra, $S=\operatorname{Spec}(R)$.
Let $G$ be an $S$-group scheme. Then $G$ is equipped with:

- The relative Frobenius morphism $F: G \rightarrow G^{(p)}:=G \times_{S, \text { Frob }} S$.
- The Verschiebung morphism $V: G^{(p)} \rightarrow G$, most easily defined as

$$
V=\left(F_{G^{\vee}}\right)^{\vee}
$$

where ${ }^{\vee}$ indicates Cartier duality.

Note that $V F=p \cdot \mathrm{id}_{G}$ and $F V=p \cdot \operatorname{id}_{G(p)}$.

Let $\mathbb{G}_{a, R}$ be the additive group scheme over $R$.
When $R$ is understood, denote it $\mathbb{G}_{a}$.
Then $\operatorname{End}_{R \text {-gp }}\left(\mathbb{G}_{a}\right) \cong R[F]$, where $F a=a^{p} F$ for all $a \in R$.
Given a finite group scheme G, define

$$
\mathcal{D}^{*}(G)=\operatorname{Hom}_{R-\mathrm{gp}}\left(G, \mathbb{G}_{a}\right)
$$

The ring $R[F]$ acts on $\mathcal{D}^{*}(G)$ through its action on $\mathbb{G}_{a}$.
This gives a contravariant functor

$$
\{\text { finite } R \text {-group schemes }\} \longrightarrow\{\text { finite } R[F] \text {-modules }\}
$$

which is not an anti-equivalence.

## $\mathcal{D}^{*}(G)=\operatorname{Hom}_{R-\mathrm{gp}}\left(G, \mathbb{G}_{a}\right)$

However, the restricted functor

$$
\left\{\begin{array}{c}
R \text {-group schemes } \\
\text { killed by } V
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { finite } R[F] \text {-modules, } \\
R \text {-free, killed by } V
\end{array}\right\}
$$

is an anti-equivalence; furthermore,

$$
\operatorname{rk}(G)=p^{\mathrm{rk}_{R}\left(\mathcal{D}^{*}(G)\right)}
$$

and this is compatible with base change.
We will call finite, $R$-free $R[F]$-modules Dieudonné modules.
(It is the only type of Dieudonné module needed here.)

## Q. Which finite group schemes are killed by V?

Finite subgroup schemes of $\mathbb{G}_{a}^{n}$ for some $n$.
(Short rationale: $\mathbb{G}_{a}=\operatorname{ker} V: W \rightarrow W$.)

Group schemes killed by $p$ include:

- $\alpha_{p^{n}}=\operatorname{ker} F^{n}: \mathbb{G}_{a} \rightarrow \mathbb{G}_{a}$.
( $n^{\text {th }}$ Frobenius kernel of $\mathbb{G}_{a}$ )
- $\mathbb{Z} / p \mathbb{Z}=\operatorname{ker}(F-\mathrm{id}): \mathbb{G}_{a} \rightarrow \mathbb{G}_{a}$. (constant group scheme)
- Finite products of the group schemes above.

This is not an exhaustive list.

## Algebraic Interpretation

$\mathbb{G}_{a}=\operatorname{Spec}(R[t])$ with $t$ primitive.
Let $G$ be a group scheme, $G=\operatorname{Spec}(H)$.
Then

$$
\mathcal{D}^{*}(G)=\operatorname{Hom}_{R-\mathrm{gp}}\left(G, \mathbb{G}_{a}\right) \cong \operatorname{Hom}_{R-\mathrm{Hopf} \operatorname{alg}}(R[t], H)
$$

Under this identification, $f \in \mathcal{D}^{*}(G)$ sends $t$ to a primitive element in $H$, and $f$ is completely determined by this image.
Thus, we define

$$
\mathcal{D}_{*}(H)=P(H)
$$

and obtain a categorical equivalence
$\left\{\begin{array}{c}\text { finite, flat, abelian } \\ \text { R-Hopf algebras } \\ \text { "killed by V" }\end{array}\right\} \longrightarrow\{$ Dieudonné modules $\}$.

## The inverse

Let $M$ be a finite $R[F]$-module, free over $R$. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an $R$-basis for $M$.
Let $a_{i, j}, 1 \leq i, j \leq n$ be given by

$$
F e_{i}=\sum_{j=1}^{n} a_{j, i} e_{j}
$$

Then $\mathcal{D}_{*}(H)=M$, where

$$
H=R\left[t_{1}, \ldots, t_{n}\right] /\left(\left\{t_{i}^{p}-\sum_{j=1}^{n} a_{j, i} t_{j}\right\}\right),\left\{t_{i}\right\} \subset P(H)
$$

By writing $M=R^{n}$ and using $e_{i}$ as a standard basis vector, we have

$$
F e_{i}=A e_{i}
$$

where $A=\left(a_{i, j}\right) \in M_{n}(R)$.

## Some Examples

Throughout, we also use $F$ to denote the Frobenius morphism on Hopf algebras.

In each example, the explicit algebra generators are primitive.

## Example

$G=\alpha_{p}^{n}, H=R\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{p}, \ldots, t_{n}^{p}\right) . P(H)=\operatorname{Span}_{R}\left\{t_{1}, \ldots, t_{n}\right\}$. $F\left(t_{i}^{p}\right)=0,1 \leq i \leq n$.
So $\mathcal{D}_{*}(H)$ is $R$-free on $e_{1}, \ldots, e_{n}$ with

$$
F e_{i}=0
$$

In this case, $A=0\left(F e_{i}=A e_{i}=0\right)$.

## Example

$G=\alpha_{p^{n}}, H=R[t] /\left(t^{p^{n}}\right)=R\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{p}, t_{2}^{p}-t_{1}, \ldots, t_{n}^{p}-t_{n-1}\right)$
$P(H)=\operatorname{Span}_{R}\left\{t, t^{p}, \ldots, t^{p-1}\right\}$.
$F\left(t^{p^{i}}\right)=t^{p^{i+1}}, 0 \leq i \leq n-1$.
So $\mathcal{D}_{*}(H)$ is $R$-free on $e_{1}, \ldots, e_{n}$ with

$$
F e_{i}=\left\{\begin{array}{ll}
e_{i-1} & i>1 \\
0 & i=1
\end{array} .\right.
$$

In this case,

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

## Example

$$
\begin{aligned}
& G=(\mathbb{Z} / p \mathbb{Z})^{n}, H=\left(R C_{p}^{n}\right)^{*}=R\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{p}-t_{1}, \ldots, t_{n}^{p}-t_{n}\right) \\
& P(H)=\operatorname{Span}_{R}\left\{t_{1}, \ldots, t_{n}\right\} . \\
& F\left(t_{i}\right)=t_{i}^{p}=t_{i}, 1 \leq i \leq n .
\end{aligned}
$$

So $\mathcal{D}_{*}(H)$ is $R$-free on $e, \ldots, e_{n}$ with $F e_{i}=e_{i}$ for all $i$.
Clearly, $A=I$.

## An example in the other direction

## Example

Let $A$ be the cyclic permutation matrix

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right), \mathcal{D}(H)=M_{A}
$$

Then $H$ is generated by primitive elements $t_{1}, \ldots, t_{n}$ with

$$
t_{i}^{p}=\left\{\begin{array}{cc}
t_{i-1} & i>0 \\
t_{n} & i=0
\end{array}\right.
$$

If we set $t=t_{n}$ then

$$
H=R[t] /\left(t^{p^{n}}-t\right)
$$

## Outline

## (1) Dieudonné Module Theory

(2) More Linear Algebra
(3) Hopf Orders

4 Rank $p$ Hopf orders
(5) Rank $p^{n}, n$ usually 2
(6) What to do now

## Maps

Let $A, B \in M_{n}(R)$.

Let $M_{A}, M_{B}$ be free $R$-modules of rank $n$ which are also $R[F]$-modules via

$$
F e_{i}=A e_{i} \text { and } F e_{i}=B e_{i}
$$

respectively.

A morphism of Dieudonné modules is an $R$-linear map $M_{A} \rightarrow M_{B}$ which respects the actions of $F$.

Let $\Theta \in M_{n}(R)$ represent (and be) an $R$-linear map $M_{A} \rightarrow M_{B}$.
Let $n=2$ and write

$$
A=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right), B=\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right), \Theta=\left(\begin{array}{ll}
\theta_{1} & \theta_{2} \\
\theta_{3} & \theta_{4}
\end{array}\right) .
$$

Then:

$$
\begin{aligned}
F\left(\Theta\left(e_{1}\right)\right) & =F\left(\theta_{1} e_{1}+\theta_{3} e_{2}\right) \\
& =\theta_{1}^{p}\left(b_{1} e_{1}+b_{3} e_{2}\right)+\theta_{3}^{p}\left(b_{2} e_{1}+b_{4} e_{2}\right) \\
& =\left(\theta_{1}^{p} b_{1}+\theta_{3}^{p} b_{2}\right) e_{1}+\left(\theta_{1}^{p} b_{3}+\theta_{3}^{p} b_{4}\right) e_{2} \\
\Theta\left(F e_{1}\right) & =\Theta\left(a_{1} e_{1}+a_{3} e_{2}\right) \\
& =a_{1}\left(\theta_{1} e_{1}+\theta_{3} e_{2}\right)+a_{3}\left(\theta_{2} e_{1}+\theta_{4} e_{2}\right) \\
& =\left(a_{1} \theta_{1}+a_{3} \theta_{2}\right) e_{1}+\left(a_{1} \theta_{3}+a_{3} \theta_{4}\right) e_{2}
\end{aligned}
$$

Repeat for $F\left(\Theta\left(e_{2}\right)\right)=\Theta\left(F e_{2}\right)$. We get:

$$
\begin{aligned}
\theta_{1} a_{1}+\theta_{2} a_{3} & =b_{1} \theta_{1}^{p}+b_{2} \theta_{3}^{p} \\
\theta_{3} a_{1}+\theta_{4} a_{3} & =b_{3} \theta_{1}^{p}+b_{4} \theta_{3}^{p} \\
\theta_{1} a_{2}+\theta_{2} a_{4} & =b_{1} \theta_{2}^{p}+b_{2} \theta_{4}^{p} \\
\theta_{3} a_{2}+\theta_{4} a_{4} & =b_{3} \theta_{2}^{p}+b_{4} \theta_{4}^{p} .
\end{aligned}
$$

In other words,

$$
\Theta A=B \Theta^{(p)}
$$

where $\Theta^{(p)}=\left(\theta_{i}^{p}\right)$ for all $i$.
Furthermore, $\Theta$ is an isomorphism if and only if $\Theta \in M_{2}(R)^{\times}$.
This generalizes to any $n$.

Choosing $A \in M_{n}(R)$ gives an $R$-Hopf algebra, say $H_{A}$.
But. Different choices of $A$ can produce the "same" Hopf algebra.

## Example

Pick $r \in R, r \notin \mathbb{F}_{p}$, and let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & 0 \\
r^{p}-r & 1
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& H_{A}=R\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}-t_{1}, t_{2}^{p}-t_{2}\right) \\
& H_{B}=R\left[u_{1}, u_{2}\right] /\left(u_{1}^{p}-u_{1}-\left(r^{p}-r\right) u_{2}, u_{2}^{p}-u_{2}\right)
\end{aligned}
$$

Since

$$
\left(t_{1}+r t_{2}\right)^{p}=t_{1}+r^{p} t_{2}=t_{1}+r t_{2}+r^{p} t_{2}-r t_{2}=\left(t_{1}+r t_{2}\right)+\left(r^{p}-r\right) t_{2}
$$

if we let $u_{1}=t_{1}+r t_{2}, u_{2}=t_{2}$, then $H_{A}=H_{B}$.

## Outline

## (1) Dieudonné Module Theory

(2) More Linear Algebra
(3) Hopf Orders
(4) Rank $p$ Hopf orders
(5) Rank $p^{n}, n$ usually 2

6 What to do now

From now on, $R=\mathbb{F}_{q}[[T]], K=\mathbb{F}_{q}((T))$.
Let $v_{K}$ be the valuation on $K$ with $v_{K}(T)=1$.
We have $R$-Dieudonné modules and $K$-Dieudonné modules, compatible with base change.

Pick $A, B \in M_{n}(R)$ and construct $R$-Dieudonné modules $M_{A}, M_{B}$.
Write $M_{A}=\mathcal{D}_{*}\left(H_{A}\right)$ and $M_{B}=\mathcal{D}_{*}\left(H_{B}\right)$.
Then $\mathcal{D}_{*}\left(K H_{A}\right)$ is a Dieudonné module over $K$ and

$$
\mathcal{D}_{*}\left(K H_{A}\right) \cong \mathcal{D}_{*}\left(H_{A}\right) \otimes_{R} K .
$$

Similarly,

$$
\mathcal{D}_{*}\left(K H_{B}\right) \cong \mathcal{D}_{*}\left(H_{B}\right) \otimes_{R} K .
$$

Now $K H_{A} \cong K H_{B}$ if and only if there is a $\Theta \in \mathrm{GL}_{n}(K)$ which, viewed as a $K$-linear isomorphism

$$
\mathcal{D}_{*}\left(K H_{A}\right) \rightarrow \mathcal{D}_{*}\left(K H_{B}\right)
$$

respects the $F$-actions on the $K$-Dieudonné modules.

Thus, $H_{A}$ and $H_{B}$ are Hopf orders in the same $K$-Hopf algebra iff

$$
\Theta A=B \Theta^{(p)} \text { for some } \Theta \in G L_{n}(K)
$$

$$
\Theta A=B \Theta^{(p)} \text { for some } \Theta \in G L_{n}(K)
$$

Write $A=\left(a_{i, j}\right), B=\left(b_{i, j}\right), \Theta=\left(\theta_{i, j}\right)$. Then

- $H_{A}$ is viewed as an $R$-Hopf algebra using $A$, i.e.

$$
H_{A}=R\left[u_{1}, \ldots u_{n}\right] /\left(\left\{u_{i}^{p}-\sum a_{j, i} u_{j}\right\}\right) .
$$

- $H_{B}$ is viewed as an $R$-Hopf algebra using $B$, i.e.

$$
H_{B}=R\left[t_{1}, \ldots t_{n}\right] /\left(\left\{t_{i}^{p}-\sum b_{j, i} t_{j}\right\}\right) .
$$

- $K H_{B}$ is viewed as a $K$-Hopf algebra in the obvious way.
- $H_{B}$ is viewed as an order in $K H_{B}$ in the obvious way.
- $H_{A}$ is viewed as an order in $K H_{B}$ through $\Theta$, i.e.

$$
H_{A}=R\left[\left\{\sum_{j=1}^{n} \theta_{j, i} t_{j}: 1 \leq i \leq n\right\}\right] \subset K H_{B}
$$

(apologies for the abuses of language)

## Outline

(1) Dieudonné Module Theory
(2) More Linear Algebra
(3) Hopf Orders

4 Rank $p$ Hopf orders
(5) Rank $p^{n}, n$ usually 2

6 What to do now

## What are the rank Hopf algebras (killed by $V$ ) over $K$ ?

They correspond to rank 1 Dieudonné modules over $K$.
Fix $a \in K$, and let $M=K e$ with $F e=a e$.
The corresponding Hopf algebra is $H_{a}:=K[t] /\left(t^{p}-a t\right)$.
Furthermore, $H_{a} \cong H_{b}$ if and only if there is a $\theta \in K^{\times}$with $\theta a=b \theta^{p}$.
Case $b=0$. This is the algebra which represents $\alpha_{p}$.
Case $b \neq 0$. Let $\theta=b^{1 /(1-p)} \in K^{\text {sep }}$.
Then

$$
H_{b} \otimes K^{\mathrm{sep}} \cong H_{1} \otimes K^{\mathrm{sep}}=\left(K^{\mathrm{sep}} C_{p}\right)^{*}
$$

hence $H_{b}$ is a form of $K C_{p}^{*}$.
(This is a well-known result in descent theory.)

## Case $b=1$ : orders in $K C_{p}^{*}$

Strategy. Pick $\theta \in K$ such that $\theta^{p-1} \in R($ so $\theta \in R)$, and let $a=\theta^{p-1}$. Then $M=R e, F e=a e$ is an $R$-Dieudonné module, whose Hopf algebra $H_{\theta}$ is generically isomorphic to $K C_{p}^{*}$.
The $R$-Hopf algebra is

$$
H_{\theta} \cong R[u] /\left(u^{p}-a u\right)
$$

We can view it as a Hopf order by identifying $u$ with $\theta t$ and hence

$$
H_{\theta}=R[\theta t] \subset K[t] /\left(t^{p}-t\right)
$$

Check:

$$
u^{p}=(\theta t)^{p}=\theta^{p} t^{p}=\theta^{p-1} \theta t=a u
$$

Note $H_{\theta_{1}}=H_{\theta_{2}}$ iff $v_{K}\left(\theta_{1}\right)=v_{K}\left(\theta_{2}\right)$, so the Hopf orders are:

$$
H_{i}=R\left[T^{i} t\right], i \geq 0
$$

## Case $b \neq 0$

Since $K[t] /\left(t^{p}-b t\right) \cong K[t] /\left(t^{p}-T^{p-1} b t\right)$ by the map $t \mapsto T^{-1} t$, we may assume

$$
0 \leq v_{K}(b)<p-1 .
$$

Pick $\theta \in K^{\times}$and let $a=b \theta^{p-1}$.
Provided $a \in R$ (which holds iff $\theta \in R$ ) we have

$$
H_{\theta}=R[\theta t] \subset K[t] /\left(t^{p}-b t\right) .
$$

As before, if $u=\theta t$ then

$$
u^{p}=(\theta t)^{p}=\theta^{p} t^{p}=\theta^{p-1} b \theta t=a u
$$

and so $H_{\theta}=R[u] /\left(u^{p}-a u\right)$.
Again, $H_{\theta}$ depends only on $v_{K}(\theta)$, so a complete list is

$$
H_{i}=R\left[T^{i} t\right], i \geq 0 .
$$

## Case $b=0$

Clearly, $\theta a=b \theta^{p}$ can occur only if $a=0$.
So, any two $R$-Hopf orders in $K[t] /\left(t^{p}\right)$ are isomorphic.
However. They are not necessarily the same Hopf order. It depends on the chosen embedding $\Theta=(\theta) \in G L_{1}(K)$.

Let $\theta \in K^{\times}$.
Then $R[\theta t]$ is a Hopf order in $K[t] /\left(t^{p}\right)$.
As $R[\theta t]=R[(r \theta) t], r \in R^{\times}$, the complete list is

$$
H_{i}=R\left[T^{i} t\right], i \in \mathbb{Z}
$$

## Outline

## (1) Dieudonné Module Theory

(2) More Linear Algebra
(3) Hopf Orders
(4) Rank p Hopf orders
(5) Rank $p^{n}, n$ usually 2

## (6) What to do now

## The new definition of "all"

The $R$-Hopf orders we find are subgroups of $\mathbb{G}_{a, R}^{n}$.

If there are nontrivial models of $\mathbb{G}_{a, K}^{n}$ then it we may miss some Hopf orders.
i.e., If $\mathcal{G}=\operatorname{Spec}(A), \mathcal{G} \nsubseteq \mathbb{G}_{\mathrm{a}, R}$ with

$$
A \otimes_{R} K \cong R\left[x_{1}, \ldots, x_{n}\right], \Delta\left(x_{i}\right)=x_{i} \otimes 1+1 \otimes x_{i},
$$

and $G=\operatorname{Spec}(H)$ is a subgroup of $\mathbb{G}_{a, K}^{n}$, and $G_{0}=\operatorname{Spec}\left(H_{0}\right)$ is a subgroup of $\mathcal{G}$ such that $H_{0}$ is a Hopf order in $H$, our procedure will not detect it.

This is not an issue when $n=1$ since $\mathbb{G}_{a, K}$ has no nontrivial models.

## Overview for all $n$

- Pick a $K$-Hopf algebra $H$, and find the $B \in M_{n}(K)$ which is used in the construction of its $K$-Dieudonné module.
- Find $A \in M_{n}(R)$ such that $\Theta A=B \Theta^{(p)}$ for some $\Theta \in G L_{n}(K)$. (One such example: $A=B, \Theta=I$.)
- Construct the R-Dieudonné module corresponding to $A$.
- Construct the $R$-Hopf algebra $H_{A}$ corresponding to this Dieudonné module.
- The algebra relations on $H_{A}$ are given by the matrix $A$.
- $H_{A}$ can be viewed as a Hopf order in $H$ using $\Theta$.
- $H_{A_{1}}=H_{A_{2}}$ if and only if $\Theta^{-1} \Theta^{\prime}$ is an invertible matrix in $R$, where

$$
\Theta A_{1}=B \Theta^{(p)} \text { and } \Theta^{\prime} A_{2}=B\left(\Theta^{\prime}\right)^{(p)}
$$

Alternatively, $H_{A_{1}}=H_{A_{2}}$ if and only if $\Theta^{\prime}=\Theta U$ for some $U \in M_{n}(R)^{\times}$.

## $\Theta A=B \Theta^{(p)}$

Note. $M_{n}(R)^{\times}$are the matrices that invert in $R$, not invertible matrices with entries in $R$.

$$
M_{n}(R)^{\times} \subsetneq M_{2}(R) \cap G L_{2}(K) .
$$

One strategy. Given $B$, set $A=\Theta^{-1} B \Theta^{(p)}$.
This will generate a Hopf order iff $A$ has coefficients in $R$.
But, we can replace $\Theta$ with $\Theta U$ for $U \in M_{2}(R)^{\times}$.
Notice that

$$
(\Theta U)^{-1} B(\Theta U)^{(p)}=U^{-1}\left(\Theta^{-1} B \Theta^{(p)}\right) U^{(p)},
$$

and so $(\Theta U)^{-1} B(\Theta U)^{(p)} \in M_{n}(R)$ iff $\Theta^{-1} B \Theta^{(p)} \in M_{n}(R)$.

## $n$ is now 2

Write $\Theta=\left(\begin{array}{ll}\theta_{1} & \theta_{2} \\ \theta_{3} & \theta_{4}\end{array}\right)$.
If $v_{K}\left(\theta_{2}\right)<v_{K}\left(\theta_{1}\right)$ then replace $\Theta$ with

$$
\Theta\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

so $v_{K}\left(\theta_{2}\right) \geq v_{K}\left(\theta_{1}\right)$.
Then replace this (possibly new) $\Theta$ with

$$
\Theta\left(\begin{array}{cc}
1 & -\theta_{2} / \theta_{1} \\
0 & 1
\end{array}\right)
$$

so we may assume $\theta_{2}=0$.
Now $\Theta$ is lower triangular.

## Now $\Theta$ is lower triangular

We can replace $\Theta$ with

$$
\Theta\left(\begin{array}{cc}
\theta_{1}^{-1} T^{v_{K}\left(\theta_{1}\right)} & 0 \\
0 & \theta_{4}^{-1} T^{v_{K}\left(\theta_{4}\right)}
\end{array}\right)
$$

to make $\theta_{1}, \theta_{4}$ powers of $T$.
Finally, if $v_{K}\left(\theta_{4}\right) \leq v_{K}\left(\theta_{3}\right)$ then we can replace $\Theta$ with

$$
\Theta\left(\begin{array}{cc}
1 & 0 \\
-\theta_{3} / \theta_{4} & 1
\end{array}\right)
$$

to make $\theta_{3}=0$.
So, we have two cases:
(1) $\Theta$ is diagonal.
(2) $\Theta$ is lower triangular with $v_{K}\left(\theta_{3}\right)<v_{K}\left(\theta_{4}\right)$.

## Set $\theta_{1}=T^{i}, \theta_{2}=0, \theta_{3}=\theta, \theta_{4}=T^{j}$

The Hopf orders will be of the form

$$
H_{i, j, \theta}=R\left[T^{i} t_{1}+\theta t_{2}, T^{j} t_{2}\right]
$$

with $\theta=0$ or $v_{K}(\theta)<j$.
But, not every expression of this form is a Hopf order.

## Example

$H=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}-t_{1}, t_{2}^{p}-t_{2}\right)$
Then $H_{-1,0,0}=R\left[T^{-1} t_{1}, t_{2}\right]$ is not a Hopf order because it is not a finitely generated $R$-module, e.g.:

$$
\left(T^{-1} t_{1}\right)^{p}=T^{-p} t_{1} \notin \operatorname{Span}_{R}\left\{\left(T^{-1} t_{1}\right)^{i} t_{2}^{j}: 0 \leq i, j \leq p-1\right\}
$$

## $H_{i, j, \theta}=R\left[T^{i} t_{1}+\theta t_{2}, T^{j} t_{2}\right], v_{K}(\theta)<j$

In the case $\theta=0$ we get

$$
H_{i, j, 0}=R\left[T^{i} t_{1}, T^{j} t_{2}\right]
$$

Creating Larson-like orders.

Note that we can (and often do) have $i, j>0$, in contrast to the "real" Larson orders.

## $H_{i, j, \theta}=R\left[T^{i} t_{1}+\theta t_{2}, T^{j} t_{2}\right], v_{K}(\theta)<j$

Q. When is $H_{i, j, \theta}=H_{i^{\prime}, j^{\prime}, \theta^{\prime}}$ ?

Precisely when there is a $U \in M_{n}(R)^{\times}$such that

$$
\left(\begin{array}{cc}
T^{i} & 0 \\
\theta & T^{j}
\end{array}\right)=\left(\begin{array}{cc}
T^{i^{\prime}} & 0 \\
\theta^{\prime} & T^{j}
\end{array}\right) U
$$

Such a $U$ exists if and only if

$$
\begin{aligned}
i & =i^{\prime} \\
j & =j^{\prime} \\
v_{K}\left(\theta-\theta^{\prime}\right) & \geq j .
\end{aligned}
$$

Note that this includes the case $\theta=0$ since for $\theta^{\prime} \neq 0, v_{K}\left(\theta^{\prime}\right)<j$.

## An example: $H=K\left[t_{1}, t_{2}\right],\left(t_{1}^{p}, t_{2}^{p}\right)$

$$
A=\Theta^{-1} B \Theta^{(p)}
$$

Here $B=0$, so we must have $A=0$.
Then any $\Theta \in \mathrm{GL}_{2}(K)$ gives a Hopf order.
In this case,

$$
\begin{gathered}
H_{i, j, 0}=R\left[T^{i} t_{1}, T^{j} t_{2}\right] \\
H_{i, j, \theta}=R\left[T^{i} t_{1}+\theta t_{2}, T^{j} t_{2}\right], i, j \in \mathbb{Z}, v_{K}(\theta)<j
\end{gathered}
$$

are all of the Hopf orders, and $H_{i, j, \theta}=H_{i, j, \theta^{\prime}}$ iff $v_{K}\left(\theta-\theta^{\prime}\right) \geq j$. Writing $\theta=T^{k} u, v_{K}(u)=0$ gives a parameterization of all of the non-Larson-like Hopf orders:

$$
\left\{(i, j, k, u): i, j, k \in \mathbb{Z}, k<j, 0 \neq u \in R / T^{j-k} R\right\}
$$

## Another example: $H=K[t] /\left(t^{p^{2}}\right)=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}, t_{2}^{p}-t_{1}\right)$

In this case, $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Let $\Theta=\left(\begin{array}{cc}T^{i} & 0 \\ \theta & T^{j}\end{array}\right), \theta=0$ or $v_{K}(\theta)<j$.

$$
A=\Theta^{-1} B \Theta^{(p)}=\left(\begin{array}{cc}
\theta^{p} T^{-i} & T^{p j-i} \\
-\theta^{p+1} T^{-(i+j)} & \theta T^{(p-1) j-i}
\end{array}\right)
$$

If $\theta=0$, then $p j \geq i$, so $A=\left(\begin{array}{cc}0 & T^{p j-i} \\ 0 & 0\end{array}\right)$, which gives the Larson-like Hopf order

$$
R\left[T^{i} t_{1}, T^{j} t_{2}\right]=R\left[T^{i} t^{p}, T^{j} t\right]
$$

which is monogenic if and only if $p j=i$.

## $H=K[t] /\left(t^{p^{2}}\right)=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}, t_{2}^{p}-t_{1}\right)(s t i l l)$

Case $v_{K}(\theta)<j$ :

$$
A=\left(\begin{array}{cc}
\theta^{p} T^{-i} & T^{p j-i} \\
-\theta^{p+1} T^{-(i+j)} & \theta T^{(p-1) j-i}
\end{array}\right)
$$

To give a Hopf order, we require $p j>i$ and

$$
v_{K}(\theta) \geq \min \{i / p,(i+j) /(p+1), i-(p-1) j\}
$$

giving

$$
R=\left[T^{i} t_{1}+\theta t_{2}, T^{j} t_{2}\right]=R\left[T^{i} t^{p}+\theta t, T^{j} t\right] .
$$

Note. If $p j=i$ then

$$
i / p=j \leq v_{K}(\theta)<j
$$

which can't happen.

## Yet another example: $H=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}-t_{1}, t_{2}^{p}-t_{2}\right)$

This is $K\left(C_{p} \times C_{p}\right)^{*}$.
Here, $B=I$, so pick $\Theta$ and set $A=\Theta^{-1} \Theta^{(p)}$ :
$A=\frac{1}{T^{i+j}}\left(\begin{array}{cc}T^{p i+j} & 0 \\ T^{i} \theta^{p}-T^{p i} \theta & T^{i+p j}\end{array}\right)=\left(\begin{array}{cc}T^{(p-1) i} & 0 \\ T^{-j} \theta^{p}-T^{(p-1) i-j} \theta & T^{(p-1) j}\end{array}\right)$.
The Larson-likes are easy to find.

$$
\Theta=\left(\begin{array}{cc}
T^{i} & 0 \\
0 & T^{j}
\end{array}\right) \Rightarrow A=\left(\begin{array}{cc}
T^{(p-1) i} & 0 \\
0 & T^{(p-1) j}
\end{array}\right) .
$$

Clearly, $A \in M_{2}(R)$ if and only if $i, j \geq 0$.
Thus, the Larson-like Hopf orders we get are

$$
H_{i, j}=R\left[T^{i} t_{1}, T^{j} t_{2}\right], i, j \geq 0 .
$$

## $H=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}-t_{1}, t_{2}^{p}-t_{2}\right), \Theta$ not diagonal

$$
A=\left(\begin{array}{cc}
T^{(p-1) i} & 0 \\
T^{-j} \theta^{p}-T^{(p-1) i-j} \theta & T^{(p-1) j}
\end{array}\right)
$$

Again, $i, j \geq 0$. Let $k=v_{K}(\theta)$. For $A \in M_{2}(R)$ we also need

$$
v_{K}\left(\theta^{p-1}-T^{(p-1) i}\right) \geq j-k(\text { note } j-k>0)
$$

and this suffices.
Thus,

$$
H_{i, j, \theta}=R\left[T^{i} t_{1}+\theta t_{2}, T^{j} t_{2}\right]
$$

where $\theta^{p-1} \equiv T^{(p-1) i} \bmod T^{j-k} R$, i.e.,

$$
\theta \equiv z T^{i} \bmod T^{\lfloor(j-k) /(p-1)\rfloor} R, z \in \mathbb{F}_{p}^{\times} .
$$

## Last ex: $H=K[t] /\left(t p^{2}-t\right)=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}-t_{2}, t_{2}^{p}-t_{1}\right)$

This example was introduced earlier, now specialized to $n=2$.
Here, $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and

$$
A=\left(\begin{array}{cc}
\theta^{p} T^{-i} & T^{p j-i} \\
T^{p i-j}-\theta^{p+1} T^{-(i+j)} & -\theta T^{(p-1) j-i}
\end{array}\right) .
$$

The Larson-like orders are

$$
R\left[T^{i} t_{1}, T^{j} t_{2}\right]=R\left[T^{i} t^{p}, T^{j} t\right], i \leq p j \leq p^{2} i .
$$

Note. We have $i, j \geq 0$, and the order is monogenic iff $p j=i$.

$$
A=\left(\begin{array}{cc}
\theta^{p} T^{-i} & T^{p j-i} \\
T^{p i-j}-\theta^{p+1} T^{-(i+j)} & -\theta T^{(p-1) j-i}
\end{array}\right) .
$$

There are numerous non-Larson-like orders, but they remain somewhat cumbersome to describe. Along with $p j \geq i$ we need

$$
\begin{aligned}
v_{K}(\theta) & \geq i / p \\
v_{K}(\theta) & \geq i-j(p-1) \\
v_{K}\left(T^{(p+1) i-2 j}-\theta^{p+1}\right) & \geq i+j
\end{aligned}
$$

From this, we know, e.g.,

$$
\begin{aligned}
& j-(p j-i) \leq v_{K}(\theta)<j \\
& i / p \leq v_{K}(\theta)<j,
\end{aligned}
$$

but these are not sufficient inequalities.

## Outline

## (1) Dieudonné Module Theory

(2) More Linear Algebra
(3) Hopf Orders
(4) Rank $p$ Hopf orders
(5) Rank $p^{n}, n$ usually 2
(6) What to do now

## Possible Directions

(1) Extension of these examples to arbitrary $n$.

The Larson-likes seem easy for all.

The non-Larson-likes seem doable for

- $K[t] /\left(t^{p^{n}}\right)$
- $K\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{p}, t_{2}^{p}, \ldots, t_{n}^{p}\right)$,
more complicated for $\left(R C_{p}^{\eta}\right)^{*}$.

Need a simple representation for $\Theta$. (Lower triangular? Powers of $T$ on diagonal? Highest valuation on diagonal?)

## Possible Directions

(2) Make concrete connections to works with similar results from characteristic zero.

- Construction of Hopf orders in $K C_{p^{n}}$ and $K C_{p}^{n}$ using polynomial formal groups. [Childs et al]
- Breuil-Kisin module constructions corresponding to Hopf orders in $K C_{p}^{n}$ [K.]

Both of these use a matrix $\Theta$, and the location of the entries of $\Theta^{-1} \Theta^{(p)}$ is important.

## Possible Directions

(3) Extend to cases where $V$ does not act trivially.

Possible tools:

- Breuil-Kisin modules
- Dieudonné displays, frames, etc.
- 1993 work of de Jong, in which the Dieudonné correspondence here can be found, treats more general cases to some degree.

There is also an equivalence between group schemes $G=\operatorname{Spec}(H)$ killed by $F$ and $R[V]$-modules given by

$$
H \mapsto H^{+} /\left(H^{+}\right)^{2}
$$

This correspondence may be used to find Hopf orders in, for example, elementary abelian group rings.

Thank you.

