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Overview, Assumptions

Let R be a complete discrete valuation ring of (equal) characteristic p,
K = Frac R.

We describe R-Hopf orders in a class of K -Hopf algebras H which are
generated as K -algebras by their primitive elements P(H).

[Some of this will work for R = Fq[t ], K = Fq(t), q a power of p.]

These include orders in:

K [t ]/(tpn
), the monogenic local-local Hopf algebra of rank pn

(K�)⇤, � an elementary abelian p-group

Assumptions
All group schemes are affine, flat, commutative, p-power rank.
All Hopf algebras are abelian (commutative, cocommutative), free
over its base ring, and of p-power rank.
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Geometric Interpretation

For now, let R be any Fp-algebra, S = Spec(R).

Let G be an S-group scheme. Then G is equipped with:

The relative Frobenius morphism F : G ! G(p) := G ⇥S,Frob S.

The Verschiebung morphismV : G(p) ! G, most easily defined as

V = (FG_)_

where _ indicates Cartier duality.

Note that VF = p · idG and FV = p · idG(p) .
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Let Ga,R be the additive group scheme over R.

When R is understood, denote it Ga.

Then EndR-gp(Ga) ⇠= R[F ], where Fa = apF for all a 2 R.

Given a finite group scheme G, define

D⇤(G) = HomR-gp(G,Ga).

The ring R[F ] acts on D⇤(G) through its action on Ga.

This gives a contravariant functor

{finite R-group schemes} �! {finite R[F ]-modules}

which is not an anti-equivalence.

Alan Koch (Agnes Scott College) 5 / 47



D⇤(G) = HomR-gp(G,Ga)

However, the restricted functor

⇢
R-group schemes

killed by V

�
�!

⇢
finite R[F ]-modules,
R-free, killed by V

�

is an anti-equivalence; furthermore,

rk(G) = prkR(D⇤(G)),

and this is compatible with base change.

We will call finite, R-free R[F ]-modules Dieudonné modules.

(It is the only type of Dieudonné module needed here.)

Alan Koch (Agnes Scott College) 6 / 47



Q. Which finite group schemes are killed by V?

Finite subgroup schemes of Gn
a for some n.

(Short rationale: Ga = ker V : W ! W .)

Group schemes killed by p include:
↵pn = ker F n : Ga ! Ga.
(nth Frobenius kernel of Ga)
Z/pZ = ker(F � id) : Ga ! Ga.
(constant group scheme)
Finite products of the group schemes above.

This is not an exhaustive list.
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Algebraic Interpretation

Ga = Spec(R[t ]) with t primitive.
Let G be a group scheme, G = Spec(H).
Then

D⇤(G) = HomR-gp(G,Ga) ⇠= HomR-Hopf alg(R[t ],H).

Under this identification, f 2 D⇤(G) sends t to a primitive element in H,
and f is completely determined by this image.
Thus, we define

D⇤(H) = P(H)

and obtain a categorical equivalence
8
<

:

finite, flat, abelian
R-Hopf algebras

“killed by V"

9
=

; �! {Dieudonné modules} .
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The inverse
Let M be a finite R[F ]-module, free over R. Let {e1, e2, . . . , en} be an
R-basis for M.
Let ai,j , 1  i , j  n be given by

Fei =
nX

j=1

aj,i ej .

Then D⇤(H) = M, where

H = R[t1, . . . , tn]/({tp
i �

nX

j=1

aj,i tj}), {ti} ⇢ P(H)

By writing M = Rn and using ei as a standard basis vector, we have

Fei = Aei

where A = (ai,j) 2 Mn(R).
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Some Examples

Throughout, we also use F to denote the Frobenius morphism on Hopf
algebras.

In each example, the explicit algebra generators are primitive.

Example
G = ↵n

p, H = R[t1, . . . , tn]/(t
p
1 , . . . , t

p
n ). P(H) = SpanR{t1, . . . , tn}.

F (tp
i ) = 0, 1  i  n.

So D⇤(H) is R-free on e1, . . . , en with

Fei = 0.

In this case, A = 0 (Fei = Aei = 0).
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Example
G = ↵pn , H = R[t ]/(tpn

) = R[t1, . . . , tn]/(t
p
1 , t

p
2 � t1, . . . , t

p
n � tn�1)

P(H) = SpanR{t , tp, . . . , tpn�1}.
F (tpi

) = tpi+1
, 0  i  n � 1.

So D⇤(H) is R-free on e1, . . . , en with

Fei =

⇢
ei�1 i > 1
0 i = 1 .

In this case,

A =

0

BBBBBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . . . . ...

0 0 0 . . . 1
0 0 0 · · · 0

1

CCCCCCA
.
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Example
G = (Z/pZ)n, H =

�
RCn

p
�⇤

= R[t1, . . . , tn]/(t
p
1 � t1, . . . , t

p
n � tn)

P(H) = SpanR{t1, . . . , tn}.
F (ti) = tp

i = ti , 1  i  n.
So D⇤(H) is R-free on e, . . . , en with Fei = ei for all i .
Clearly, A = I.

Alan Koch (Agnes Scott College) 12 / 47



An example in the other direction

Example
Let A be the cyclic permutation matrix

A =

0

BBBBBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . . . . ...

0 0 0 . . . 1
1 0 0 · · · 0

1

CCCCCCA
,D(H) = MA.

Then H is generated by primitive elements t1, . . . , tn with

tp
i =

⇢
ti�1 i > 0
tn i = 0

If we set t = tn then
H = R[t ]/(tpn � t),

a monogenic Hopf algebra of rank pn.Alan Koch (Agnes Scott College) 13 / 47
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Maps

Let A,B 2 Mn(R).

Let MA,MB be free R-modules of rank n which are also R[F ]-modules
via

Fei = Aei and Fei = Bei

respectively.

A morphism of Dieudonné modules is an R-linear map MA ! MB
which respects the actions of F .
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Let ⇥ 2 Mn(R) represent (and be) an R-linear map MA ! MB.

Let n = 2 and write

A =

✓
a1 a2
a3 a4

◆
,B =

✓
b1 b2
b3 b4

◆
,⇥ =

✓
✓1 ✓2
✓3 ✓4

◆
.

Then:

F (⇥(e1)) = F (✓1e1 + ✓3e2)

= ✓p
1(b1e1 + b3e2) + ✓p

3(b2e1 + b4e2)

= (✓p
1b1 + ✓p

3b2)e1 + (✓p
1b3 + ✓p

3b4)e2

⇥(Fe1) = ⇥(a1e1 + a3e2)

= a1(✓1e1 + ✓3e2) + a3(✓2e1 + ✓4e2)

= (a1✓1 + a3✓2)e1 + (a1✓3 + a3✓4)e2.
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Repeat for F (⇥(e2)) = ⇥ (Fe2). We get:

✓1a1 + ✓2a3 = b1✓
p
1 + b2✓

p
3

✓3a1 + ✓4a3 = b3✓
p
1 + b4✓

p
3

✓1a2 + ✓2a4 = b1✓
p
2 + b2✓

p
4

✓3a2 + ✓4a4 = b3✓
p
2 + b4✓

p
4 .

In other words,
⇥A = B⇥(p)

where ⇥(p) = (✓p
i ) for all i .

Furthermore, ⇥ is an isomorphism if and only if ⇥ 2 M2(R)⇥.

This generalizes to any n.
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Choosing A 2 Mn(R) gives an R-Hopf algebra, say HA.
But. Different choices of A can produce the “same" Hopf algebra.

Example
Pick r 2 R, r 62 Fp, and let

A =

✓
1 0
0 1

◆
and B =

✓
1 0

r p � r 1

◆
.

Then

HA = R[t1, t2]/(t
p
1 � t1, t

p
2 � t2)

HB = R[u1, u2]/(u
p
1 � u1 � (r p � r)u2, u

p
2 � u2)

Since

(t1 + rt2)p = t1 + r pt2 = t1 + rt2 + r pt2 � rt2 = (t1 + rt2) + (r p � r)t2

if we let u1 = t1 + rt2, u2 = t2, then HA = HB.
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From now on, R = Fq[[T ]], K = Fq((T )).

Let vK be the valuation on K with vK (T ) = 1.

We have R-Dieudonné modules and K -Dieudonné modules,
compatible with base change.

Pick A,B 2 Mn(R) and construct R-Dieudonné modules MA,MB.

Write MA = D⇤(HA) and MB = D⇤(HB).

Then D⇤(KHA) is a Dieudonné module over K and

D⇤(KHA) ⇠= D⇤(HA)⌦R K .

Similarly,
D⇤(KHB) ⇠= D⇤(HB)⌦R K .
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Now KHA
⇠= KHB if and only if there is a ⇥ 2 GLn(K ) which, viewed as

a K -linear isomorphism

D⇤(KHA) ! D⇤(KHB),

respects the F -actions on the K -Dieudonné modules.

Thus, HA and HB are Hopf orders in the same K -Hopf algebra iff

⇥A = B⇥(p) for some ⇥ 2 GLn(K ).
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⇥A = B⇥(p) for some ⇥ 2 GLn(K )

Write A = (ai,j),B = (bi,j),⇥ = (✓i,j). Then
HA is viewed as an R-Hopf algebra using A, i.e.

HA = R[u1, . . . un]/({up
i �

X
aj,i uj}).

HB is viewed as an R-Hopf algebra using B, i.e.

HB = R[t1, . . . tn]/({tp
i �

X
bj,i tj}).

KHB is viewed as a K -Hopf algebra in the obvious way.
HB is viewed as an order in KHB in the obvious way.
HA is viewed as an order in KHB through ⇥, i.e.

HA = R

2

4

8
<

:

nX

j=1

✓j,i tj : 1  i  n

9
=

;

3

5 ⇢ KHB

(apologies for the abuses of language)
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What are the rank Hopf algebras (killed by V ) over K ?

They correspond to rank 1 Dieudonné modules over K .

Fix a 2 K , and let M = Ke with Fe = ae.

The corresponding Hopf algebra is Ha := K [t ]/(tp � at).

Furthermore, Ha ⇠= Hb if and only if there is a ✓ 2 K⇥ with ✓a = b✓p.

Case b = 0. This is the algebra which represents ↵p.

Case b 6= 0. Let ✓ = b1/(1�p) 2 K sep.

Then
Hb ⌦ K sep ⇠= H1 ⌦ K sep = (K sepCp)

⇤,

hence Hb is a form of KC⇤
p .

(This is a well-known result in descent theory.)
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Case b = 1: orders in KC⇤
p

Strategy. Pick ✓ 2 K such that ✓p�1 2 R (so ✓ 2 R), and let a = ✓p�1.
Then M = Re,Fe = ae is an R-Dieudonné module, whose Hopf
algebra H✓ is generically isomorphic to KC⇤

p .
The R-Hopf algebra is

H✓
⇠= R[u]/(up � au).

We can view it as a Hopf order by identifying u with ✓t and hence

H✓ = R[✓t ] ⇢ K [t ]/(tp � t).

Check:
up = (✓t)p = ✓ptp = ✓p�1✓t = au.

Note H✓1 = H✓2 iff vK (✓1) = vK (✓2), so the Hopf orders are:

Hi = R[T i t ], i � 0.
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Case b 6= 0
Since K [t ]/(tp � bt) ⇠= K [t ]/(tp � T p�1bt) by the map t 7! T�1t , we
may assume

0  vK (b) < p � 1.

Pick ✓ 2 K⇥ and let a = b✓p�1.
Provided a 2 R (which holds iff ✓ 2 R) we have

H✓ = R[✓t ] ⇢ K [t ]/(tp � bt).

As before, if u = ✓t then

up = (✓t)p = ✓ptp = ✓p�1b✓t = au

and so H✓ = R[u]/(up � au).
Again, H✓ depends only on vK (✓), so a complete list is

Hi = R
h
T i t

i
, i � 0.
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Case b = 0

Clearly, ✓a = b✓p can occur only if a = 0.

So, any two R-Hopf orders in K [t ]/(tp) are isomorphic.

However. They are not necessarily the same Hopf order. It depends
on the chosen embedding ⇥ = (✓) 2 GL1(K ).

Let ✓ 2 K⇥.

Then R[✓t ] is a Hopf order in K [t ]/(tp).

As R[✓t ] = R[(r✓)t ], r 2 R⇥, the complete list is

Hi = R[T i t ], i 2 Z.
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Overview for all n

Pick a K -Hopf algebra H, and find the B 2 Mn(K ) which is used in
the construction of its K -Dieudonné module.
Find A 2 Mn(R) such that ⇥A = B⇥(p) for some ⇥ 2 GLn(K ).
(One such example: A = B, ⇥ = I. )
Construct the R-Dieudonné module corresponding to A.
Construct the R-Hopf algebra HA corresponding to this Dieudonné
module.
The algebra relations on HA are given by the matrix A.
HA can be viewed as a Hopf order in H using ⇥.
HA1 = HA2 if and only if ⇥�1⇥0 is an invertible matrix in R, where

⇥A1 = B⇥(p) and ⇥0A2 = B(⇥0)(p).

Alternatively, HA1 = HA2 if and only if ⇥0 = ⇥U for some U 2 Mn(R)⇥.

Alan Koch (Agnes Scott College) 29 / 47



⇥A = B⇥(p)

Note. Mn(R)⇥ are the matrices that invert in R, not invertible matrices
with entries in R.

Mn(R)⇥ ( M2(R) \ GL2(K ).

One strategy. Given B, set A = ⇥�1B⇥(p).

This will generate a Hopf order iff A has coefficients in R.

But, we can replace ⇥ with ⇥U for U 2 M2(R)⇥.

Notice that

(⇥U)�1B(⇥U)(p) = U�1
⇣
⇥�1B⇥(p)

⌘
U(p),

and so (⇥U)�1B(⇥U)(p) 2 Mn(R) iff ⇥�1B⇥(p) 2 Mn(R).
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n is now 2

Write ⇥ =

✓
✓1 ✓2
✓3 ✓4

◆
.

If vK (✓2) < vK (✓1) then replace ⇥ with

⇥

✓
0 1
1 0

◆

so vK (✓2) � vK (✓1).

Then replace this (possibly new) ⇥ with

⇥

✓
1 �✓2/✓1
0 1

◆

so we may assume ✓2 = 0.

Now ⇥ is lower triangular.
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Now ⇥ is lower triangular

We can replace ⇥ with

⇥

✓
✓�1

1 T vK (✓1) 0
0 ✓�1

4 T vK (✓4)

◆

to make ✓1, ✓4 powers of T .

Finally, if vK (✓4)  vK (✓3) then we can replace ⇥ with

⇥

✓
1 0

�✓3/✓4 1

◆

to make ✓3 = 0.

So, we have two cases:
1 ⇥ is diagonal.
2 ⇥ is lower triangular with vK (✓3) < vK (✓4).
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Set ✓1 = T i , ✓2 = 0, ✓3 = ✓, ✓4 = T j

The Hopf orders will be of the form

Hi,j,✓ = R
h
T i t1 + ✓t2,T j t2

i

with ✓ = 0 or vK (✓) < j .

But, not every expression of this form is a Hopf order.

Example
H = K [t1, t2]/(t

p
1 � t1, t

p
2 � t2)

Then H�1,0,0 = R
⇥
T�1t1, t2

⇤
is not a Hopf order because it is not a

finitely generated R-module, e.g.:

(T�1t1)p = T�pt1 62 SpanR{(T�1t1)i t j
2 : 0  i , j  p � 1}.
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Hi ,j ,✓ = R
⇥
T it1 + ✓t2,T jt2

⇤
, vK (✓) < j

In the case ✓ = 0 we get

Hi,j,0 = R
h
T i t1,T j t2

i
,

Creating Larson-like orders.

Note that we can (and often do) have i , j > 0, in contrast to the “real"
Larson orders.

Alan Koch (Agnes Scott College) 34 / 47



Hi ,j ,✓ = R
⇥
T it1 + ✓t2,T jt2

⇤
, vK (✓) < j

Q. When is Hi,j,✓ = Hi 0,j 0,✓0?

Precisely when there is a U 2 Mn(R)⇥ such that
✓

T i 0
✓ T j

◆
=

✓
T i 0 0
✓0 T j

◆
U.

Such a U exists if and only if

i = i 0

j = j 0

vK (✓ � ✓0) � j .

Note that this includes the case ✓ = 0 since for ✓0 6= 0, vK (✓
0) < j .
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An example: H = K [t1, t2], (t
p
1 , t

p
2 )

A = ⇥�1B⇥(p)

Here B = 0, so we must have A = 0.
Then any ⇥ 2 GL2(K ) gives a Hopf order.
In this case,

Hi,j,0 = R
h
T i t1,T j t2

i

Hi,j,✓ = R
h
T i t1 + ✓t2,T j t2

i
, i , j 2 Z, vK (✓) < j

are all of the Hopf orders, and Hi,j,✓ = Hi,j,✓0 iff vK (✓ � ✓0) � j .
Writing ✓ = T ku, vK (u) = 0 gives a parameterization of all of the
non-Larson-like Hopf orders:

{(i , j , k , u) : i , j , k 2 Z, k < j , 0 6= u 2 R/T j�kR}
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Another example: H = K [t ]/(tp2
) = K [t1, t2]/(t

p
1 , t

p
2 � t1)

In this case, B =

✓
0 1
0 0

◆
. Let ⇥ =

✓
T i 0
✓ T j

◆
, ✓ = 0 or vK (✓) < j .

A = ⇥�1B⇥(p) =

✓
✓pT�i T pj�i

�✓p+1T�(i+j) ✓T (p�1)j�i

◆
.

If ✓ = 0, then pj � i , so A =

✓
0 T pj�i

0 0

◆
, which gives the Larson-like

Hopf order

R[T i t1,T j t2] = R[T i tp,T j t ],

which is monogenic if and only if pj = i .
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H = K [t ]/(tp2
) = K [t1, t2]/(t

p
1 , t

p
2 � t1) (still)

Case vK (✓) < j :

A =

✓
✓pT�i T pj�i

�✓p+1T�(i+j) ✓T (p�1)j�i

◆

To give a Hopf order, we require pj > i and

vK (✓) � min{i/p, (i + j)/(p + 1), i � (p � 1)j},

giving

R =
h
T i t1 + ✓t2,T j t2

i
= R

h
T i tp + ✓t ,T j t

i
.

Note. If pj = i then
i/p = j  vK (✓) < j

which can’t happen.
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Yet another example: H = K [t1, t2]/(t
p
1 � t1, t

p
2 � t2)

This is K (Cp ⇥ Cp)⇤.
Here, B = I, so pick ⇥ and set A = ⇥�1⇥(p) :

A =
1

T i+j

✓
T pi+j 0

T i✓p � T pi✓ T i+pj

◆
=

✓
T (p�1)i 0

T�j✓p � T (p�1)i�j✓ T (p�1)j

◆
.

The Larson-likes are easy to find.

⇥ =

✓
T i 0
0 T j

◆
) A =

✓
T (p�1)i 0

0 T (p�1)j

◆
.

Clearly, A 2 M2(R) if and only if i , j � 0.
Thus, the Larson-like Hopf orders we get are

Hi,j = R
h
T i t1,T j t2

i
, i , j � 0.
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H = K [t1, t2]/(t
p
1 � t1, t

p
2 � t2), ⇥ not diagonal

A =

✓
T (p�1)i 0

T�j✓p � T (p�1)i�j✓ T (p�1)j

◆
.

Again, i , j � 0. Let k = vK (✓). For A 2 M2(R) we also need

vK (✓
p�1 � T (p�1)i) � j � k (note j � k > 0),

and this suffices.
Thus,

Hi,j,✓ = R
h
T i t1 + ✓t2,T j t2

i

where ✓p�1 ⌘ T (p�1)i mod T j�kR, i.e.,

✓ ⌘ zT i mod T b(j�k)/(p�1)cR, z 2 F⇥
p .
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Last ex: H = K [t ]/(tp2 � t) = K [t1, t2]/(t
p
1 � t2, t

p
2 � t1)

This example was introduced earlier, now specialized to n = 2.

Here, B =

✓
0 1
1 0

◆
and

A =

✓
✓pT�i T pj�i

T pi�j � ✓p+1T�(i+j) �✓T (p�1)j�i

◆
.

The Larson-like orders are

R
h
T i t1,T j t2

i
= R

h
T i tp,T j t

i
, i  pj  p2i .

Note. We have i , j � 0, and the order is monogenic iff pj = i .
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A =

✓
✓pT�i T pj�i

T pi�j � ✓p+1T�(i+j) �✓T (p�1)j�i

◆
.

There are numerous non-Larson-like orders, but they remain
somewhat cumbersome to describe. Along with pj � i we need

vK (✓) � i/p
vK (✓) � i � j(p � 1)

vK (T (p+1)i�2j � ✓p+1) � i + j

From this, we know, e.g.,

j � (pj � i)  vK (✓) < j
i/p  vK (✓) < j ,

but these are not sufficient inequalities.
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3 Hopf Orders

4 Rank p Hopf orders

5 Rank pn, n usually 2

6 What to do now
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Possible Directions

1 Extension of these examples to arbitrary n.

The Larson-likes seem easy for all.

The non-Larson-likes seem doable for
K [t ]/(tpn

)

K [t1, . . . , tn]/(t
p
1 , t

p
2 , . . . , t

p
n ),

more complicated for (RCn
p )

⇤.

Need a simple representation for ⇥. (Lower triangular? Powers of T on
diagonal? Highest valuation on diagonal?)
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Possible Directions

2 Make concrete connections to works with similar results from
characteristic zero.

Construction of Hopf orders in KCpn and KCn
p using polynomial

formal groups. [Childs et al]
Breuil-Kisin module constructions corresponding to Hopf orders in
KCn

p [K.]

Both of these use a matrix ⇥, and the location of the entries of
⇥�1⇥(p) is important.
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Possible Directions

3 Extend to cases where V does not act trivially.

Possible tools:
Breuil-Kisin modules
Dieudonné displays, frames, etc.
1993 work of de Jong, in which the Dieudonné correspondence
here can be found, treats more general cases to some degree.

There is also an equivalence between group schemes G = Spec(H)
killed by F and R[V ]-modules given by

H 7! H+/
�
H+

�2
.

This correspondence may be used to find Hopf orders in, for example,
elementary abelian group rings.
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Thank you.

Alan Koch (Agnes Scott College) 47 / 47


