Galois module structure of ideals: some consequences of having a Galois scaffold

Lena Sundukova

June 24, 2015

Notation

Let K be a local field with perfect residue field both of prime characteristic, p.

Consider L/K a finite Galois extension of degree p^n , $n \ge 1$ and Gal(L/K)=G.

Also let \mathfrak{O}_L and \mathfrak{O}_K be their respective valuation rings with unique maximal ideals \mathfrak{P}_L and \mathfrak{P}_K .

Denote the associated orders of \mathfrak{P}^h_L to be

$$\mathfrak{A}_{L/K}(h) = \{ lpha \in K[G] : lpha \mathfrak{P}^h_L \subseteq \mathfrak{P}^h_L \}$$
 for $h \in \mathbb{Z}$

with $\mathfrak{A}_{L/K}$ as associated order of \mathfrak{O}_L .

Recall the ramification groups of L/K defined as

$$\mathcal{G}_i = \{ \sigma \in \mathcal{G} : \sigma(x) - x \in \mathfrak{P}_L^{i+1}, \forall x \in \mathfrak{O}_L \} \text{ for } i \in \mathbb{Z}_{\geq -1}.$$

Here we consider totally ramified extensions with ramification numbers $b_1 \leq \cdots \leq b_n$ with $(b_i, p) = 1$.

Galois Scaffold

Assume $b_i \equiv b_n \pmod{p^i}$ for all *i*. Denote $b \equiv b_n \pmod{p^n}$. For $t \in \mathbb{S}_{p^n}$ define a map $\mathfrak{a} : \mathbb{S}_{p^n} \to \mathbb{S}_{p^n}$ by $\mathfrak{a}(t) := -b^{-1}t \pmod{p^n}$. Set $\mathbb{S}_p = \{0, 1, \dots, p-1\}$ and $\mathbb{S}_{p^n} = \{0, 1, \dots, p^n - 1\}$. We write $s \in \mathbb{S}_{p^n}$ as $s = \sum_{i=0}^{n-1} s_{(i)}p^i$.

Definition: A Galois scaffold on L/K (of tolerance $\mathfrak{T} = \infty$) comprises of : (1) elements $\lambda_t \in L$ for $t \in \mathbb{Z}$ such that $v_L(\lambda_t) = t$.

(2) $\Psi_i \in K[G]$ for $1 \le i \le n$ such that $\Psi_i 1 = 0$ and such that for each i and for each $t \in \mathbb{Z}$ we have

$$\Psi_i \cdot \lambda_t = \begin{cases} \lambda_{t+p^{n-i}b} & \text{if } \mathfrak{a}(t)_{(n-i)} \geq 1, \\ 0 & \text{if } \mathfrak{a}(t)_{(n-i)} = 0. \end{cases}$$

Galois Scaffold 2

For $s \in \mathbb{S}_{p^n}$ write $s \leq u$ if $s_{(i)} \leq u_{(i)}$ for all $0 \leq i \leq n-1$. Let $1 \leq b \leq p^n - 1$ and $b - p^n + 1 \leq h \leq b$. Define

$$d(s) = \left\lfloor rac{b(s+1) - h}{p^n}
ight
floor$$

and

$$w(s) = \min\{d(u) - d(u-s) : u \in \mathbb{S}_{p^n}, s \leq u\}.$$

Theorem (Byott, Childs & Elder, 2014, partial) Suppose L/K has a Galois scaffold. Then the following are true: (1) \mathfrak{P}_{L}^{h} is free over $\mathfrak{A}_{L/K}(h)$ if and only if w(s) = d(s) for all $s \in \mathbb{S}_{p^{n}}$. (2) \mathfrak{A} has \mathfrak{O}_{K} -basis { $\pi^{-w(s)}\Psi^{(s)} : s \in \mathbb{S}_{p^{n}}$ }.

Where π is the unifomizer of K and $\Psi^{(s)} = \Psi_n^{s_{(0)}} \Psi_{n-1}^{s_{(1)}} \cdots \Psi_1^{s_{(n-1)}}$.

Ferton in characteristic 0 degree p

Theorem (Ferton, 1972)

Let L/K be a totally ramified extension of degree p with ramification number b and an integer δ with $0 \le \delta < p$. Also let b/p have a continued fraction expansion $[0; q_1, q_2, \dots, q_r]$ of length r, with $q_r \ge 2$. (i) If b = 1, then $\mathfrak{P}_L^{b-\delta}$ is free over \mathfrak{A} iff $\delta \le \frac{p-1}{2}$. (ii) If b > 1 and $0 \le \delta \le b$, then $\mathfrak{P}_L^{b-\delta}$ is free over \mathfrak{A} iff (a) for even r, $\delta = 0$ or $\delta = q_r$, (b) for odd r, $\delta \le q_r/2$. (iii) If $\delta > b > 1$, then $\mathfrak{P}_L^{b-\delta}$ is not free over \mathfrak{A} .

Generalized Ferton for degree p^n

Definition

The integers (b, δ, p^k) with $1 \le k \le n$ and $0 \le \delta < p^k$ are said to satisfy Ferton condition if for the continued fraction expansion $\frac{b}{p^k} = [q_0; q_1, q_2, \dots, q_r]$ of length r, with $q_r \ge 2$ the following holds: (i) if b = 1, then $\delta \le \frac{p^k - 1}{2}$, (ii) if b > 1, then (a) for even $r, \delta = 0$ or $\delta = q_r$, (b) for odd $r, \delta \le q_r/2$.

Theorem

Let L/K be as above of degree p^n . Then $\mathfrak{P}_L^{b-\delta}$ is free **if** Ferton condition holds for (b, δ, p^k) for at least one value of k.

Example: p = 5, n = 3, b = 33.

•
$$\frac{b}{p} = [6; 1, 1, 2]$$
 $r = 3$ - odd then $\delta = 0, 1$, $h = 32, 33$.

• $\frac{b}{p^2} = [1; 3, 8]$ r = 2 - even then $\delta = 8$, h = 25.

- $\frac{b}{p^3} = [0; 3, 1, 3, 1, 2, 2]$ r = 6 even then $\delta = 2$, h = 31.
- 'sporadic' h = 29 and 30.

Duality of values of h

Lemma

Let L/K be a totally ramified extension of degree p^n with a Galois scaffold and let $h + h' \equiv b + 1 \pmod{p^n}$. Then \mathfrak{P}_L^h and $\mathfrak{P}_L^{h'}$ have the same associated orders. More precisely, the two ideals have the same sequence $\{w(s)\}_{s \in \mathbb{S}_{p^n}}$.

Given h < h' we have $d^{h'}(s) \le d^{h}(s)$ for all s. There exist s for which $d^{h'}(s) < d^{h}(s)$ and hence \mathfrak{P}_{L}^{h} is not free.

Therefore for every value of b have (at least) $\frac{(p^n-1)}{2} - 1$ non-free ideals.

Special case: $b = p^n - 1$

Lemma

Let L/K be as above and let $b = p^n - 1$. There are precisely (n + 1)distinct associated orders for each power of p and h = 0. More precisely, if h and h' both satisfy $p^k \mid h$ and $p^{k+1} \nmid h$ for $0 \le k \le n-1$. then $\mathfrak{A}_{L/K}(h) = \mathfrak{A}_{L/K}(h').$ The corresponding \mathfrak{O}_K -bases for $\mathfrak{A}_{L/K}(h)$ are as follows: (i) when h = 0 have $\{1, \pi^{-s} \Psi^{(s)} : s \in \mathbb{S}_{p^n} \setminus \{0\}\},\$ (ii) when $p \nmid h$, have $\{1, \pi^{-(s-1)}\Psi^{(s)} : s \in \mathbb{S}_{p^n} \setminus \{0\}\},\$ (iii) when $p^k \mid h$ and $p^{k+1} \nmid h$ for some 1 < k, then have $\{1, \pi^{-1}\Psi^{(1)}, \dots, \pi^{-(p^{k}-1)}\Psi^{(p^{k}-1)}, \pi^{-(p^{k}-1)}\Psi^{(p^{k})}, \dots, \pi^{-(p^{k}-2)}\Psi^{(p^{n}-1)}\}.$ Each associated order has precisely one free ideal \mathfrak{P}_{I}^{h} where $h = p^{n} - p^{k}$, (0 < k < n).