Galois module structure of ideals: some consequences of having a Galois scaffold

Lena Sundukova

June 24, 2015

Notation

Let K be a local field with perfect residue field both of prime characteristic, p.
Consider L / K a finite Galois extension of degree $p^{n}, n \geq 1$ and $\operatorname{Gal}(\mathrm{L} / \mathrm{K})=G$.
Also let \mathfrak{O}_{L} and \mathfrak{O}_{K} be their respective valuation rings with unique maximal ideals \mathfrak{P}_{L} and \mathfrak{P}_{K}.
Denote the associated orders of \mathfrak{P}_{L}^{h} to be

$$
\mathfrak{A}_{L / K}(h)=\left\{\alpha \in K[G]: \alpha \mathfrak{P}_{L}^{h} \subseteq \mathfrak{P}_{L}^{h}\right\} \text { for } h \in \mathbb{Z}
$$

with $\mathfrak{A}_{L / K}$ as associated order of \mathfrak{O}_{L}.
Recall the ramification groups of L / K defined as

$$
G_{i}=\left\{\sigma \in G: \sigma(x)-x \in \mathfrak{P}_{L}^{i+1}, \forall x \in \mathfrak{O}_{L}\right\} \text { for } i \in \mathbb{Z}_{\geq-1}
$$

Here we consider totally ramified extensions with ramification numbers $b_{1} \leq \cdots \leq b_{n}$ with $\left(b_{i}, p\right)=1$.

Galois Scaffold

Assume $b_{i} \equiv b_{n}\left(\bmod p^{i}\right)$ for all i. Denote $b \equiv b_{n}\left(\bmod p^{n}\right)$.
For $t \in \mathbb{S}_{p^{n}}$ define a map $\mathfrak{a}: \mathbb{S}_{p^{n}} \rightarrow \mathbb{S}_{p^{n}}$ by $\mathfrak{a}(t):=-b^{-1} t\left(\bmod p^{n}\right)$.
Set $\mathbb{S}_{p}=\{0,1, \ldots, p-1\}$ and $\mathbb{S}_{p^{n}}=\left\{0,1, \ldots, p^{n}-1\right\}$. We write $s \in \mathbb{S}_{p^{n}}$ as $s=\sum_{i=0}^{n-1} s_{(i)} p^{i}$.

Definition: A Galois scaffold on L / K (of tolerance $\mathfrak{T}=\infty$) comprises of :
(1) elements $\lambda_{t} \in L$ for $t \in \mathbb{Z}$ such that $v_{L}\left(\lambda_{t}\right)=t$.
(2) $\Psi_{i} \in K[G]$ for $1 \leq i \leq n$ such that $\Psi_{i} 1=0$ and such that for each i and for each $t \in \mathbb{Z}$ we have

$$
\Psi_{i} \cdot \lambda_{t}= \begin{cases}\lambda_{t+p^{n-i} b} & \text { if } \mathfrak{a}(t)_{(n-i)} \geq 1 \\ 0 & \text { if } \mathfrak{a}(t)_{(n-i)}=0\end{cases}
$$

Galois Scaffold 2

For $s \in \mathbb{S}_{p^{n}}$ write $s \preceq u$ if $s_{(i)} \leq u_{(i)}$ for all $0 \leq i \leq n-1$.
Let $1 \leq b \leq p^{n}-1$ and $b-p^{n}+1 \leq h \leq b$.
Define

$$
d(s)=\left\lfloor\frac{b(s+1)-h}{p^{n}}\right\rfloor
$$

and

$$
w(s)=\min \left\{d(u)-d(u-s): u \in \mathbb{S}_{p^{n}}, s \preceq u\right\} .
$$

Theorem (Byott, Childs \& Elder,2014, partial)
Suppose L/K has a Galois scaffold. Then the following are true:
(1) \mathfrak{P}_{L}^{h} is free over $\mathfrak{A}_{L / K}(h)$ if and only if $w(s)=d(s)$ for all $s \in \mathbb{S}_{p^{n}}$.
(2) \mathfrak{A} has \mathfrak{O}_{K}-basis $\left\{\pi^{-w(s)} \Psi^{(s)}: s \in \mathbb{S}_{p^{n}}\right\}$.

Where π is the unifomizer of K and $\Psi^{(s)}=\Psi_{n}^{s_{(0)}} \Psi_{n-1}^{s(1)} \cdots \Psi_{1}^{s_{(n-1)}}$.

Ferton in characteristic 0 degree p

Theorem (Ferton, 1972)

Let L / K be a totally ramified extension of degree p with ramification number b and an integer δ witht $0 \leq \delta<p$. Also let b / p have a continued fraction expansion $\left[0 ; q_{1}, q_{2}, \ldots, q_{r}\right]$ of length r, with $q_{r} \geq 2$.
(i) If $b=1$, then $\mathfrak{P}_{L}^{b-\delta}$ is free over \mathfrak{A} iff $\delta \leq \frac{p-1}{2}$.
(ii) If $b>1$ and $0 \leq \delta \leq b$, then $\mathfrak{P}_{L}^{b-\delta}$ is free over \mathfrak{A} iff
(a) for even $r, \delta=0$ or $\delta=q_{r}$,
(b) for odd $r, \delta \leq q_{r} / 2$.
(iii) If $\delta>b>1$, then $\mathfrak{P}_{L}^{b-\delta}$ is not free over \mathfrak{A}.

Generalized Ferton for degree p^{n}

Definition

The integers $\left(b, \delta, p^{k}\right)$ with $1 \leq k \leq n$ and $0 \leq \delta<p^{k}$ are said to satisfy Ferton condition if for the continued fraction expansion $\frac{b}{p^{k}}=\left[q_{0} ; q_{1}, q_{2}, \ldots, q_{r}\right]$ of length r, with $q_{r} \geq 2$ the following holds:
(i) if $b=1$, then $\delta \leq \frac{p^{k}-1}{2}$,
(ii) if $b>1$, then
(a) for even $r, \delta=0$ or $\delta=q_{r}$,
(b) for odd $r, \delta \leq q_{r} / 2$.

Theorem

Let L / K be as above of degree p^{n}. Then $\mathfrak{P}_{L}^{b-\delta}$ is free if Ferton condition holds for $\left(b, \delta, p^{k}\right)$ for at least one value of k.

Example: $p=5, n=3, b=33$.

- $\frac{b}{p}=[6 ; 1,1,2] \quad r=3$ - odd \quad then $\delta=0,1, \quad h=32,33$.
- $\frac{b}{p^{2}}=[1 ; 3,8] \quad r=2$ - even then $\delta=8, \quad h=25$.
- $\frac{b}{p^{3}}=[0 ; 3,1,3,1,2,2] \quad r=6-$ even \quad then $\delta=2, \quad h=31$.
- 'sporadic' $h=29$ and 30 .

Duality of values of h

Lemma

Let L / K be a totally ramified extension of degree p^{n} with a Galois scaffold and let $h+h^{\prime} \equiv b+1\left(\bmod p^{n}\right)$. Then \mathfrak{P}_{L}^{h} and $\mathfrak{P}_{L}^{h^{\prime}}$ have the same associated orders. More precisely, the two ideals have the same sequence $\{w(s)\}_{s \in \mathbb{S}_{p n}}$.

Given $h<h^{\prime}$ we have $d^{h^{\prime}}(s) \leq d^{h}(s)$ for all s. There exist s for which $d^{h^{\prime}}(s)<d^{h}(s)$ and hence \mathfrak{P}_{L}^{h} is not free.

Therefore for every value of b have (at least) $\frac{\left(p^{n}-1\right)}{2}-1$ non-free ideals.

Special case: $b=p^{n}-1$

Lemma

Let L / K be as above and let $b=p^{n}-1$. There are precisely $(n+1)$ distinct associated orders for each power of p and $h=0$. More precisely, if h and h^{\prime} both satisfy $p^{k} \mid h$ and $p^{k+1} \nmid h$ for $0 \leq k \leq n-1$, then $\mathfrak{A}_{L / K}(h)=\mathfrak{A}_{L / K}\left(h^{\prime}\right)$.
The corresponding \mathfrak{O}_{K}-bases for $\mathfrak{A}_{L / K}(h)$ are as follows:
(i) when $h=0$ have $\left\{1, \pi^{-s} \Psi^{(s)}: s \in \mathbb{S}_{p^{n}} \backslash\{0\}\right\}$,
(ii) when $p \nmid h$, have $\left\{1, \pi^{-(s-1)} \Psi^{(s)}: s \in \mathbb{S}_{p^{n}} \backslash\{0\}\right\}$,
(iii) when $p^{k} \mid h$ and $p^{k+1} \nmid h$ for some $1 \leq k$, then have

$$
\left\{1, \pi^{-1} \Psi^{(1)}, \ldots, \pi^{-\left(p^{k}-1\right)} \Psi^{\left(p^{k}-1\right)}, \pi^{-\left(p^{k}-1\right)} \Psi^{\left(p^{k}\right)}, \ldots, \pi^{-\left(p^{k}-2\right)} \Psi^{\left(p^{n}-1\right)}\right\}
$$

Each associated order has precisely one free ideal \mathfrak{P}_{L}^{h} where $h=p^{n}-p^{k}$, ($0 \leq k \leq n$).

