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Hopf Galois structures

Let L/K be a field extension, H a cocommutative K -Hopf algebra.
Then L/K is an H-Hopf Galois extension if L is an H-module algebra
and the map j : L⊗K H → EndK (L) induced from the H-module
structure on L is a bijection.
If L/K is a Galois extension with Galois group G, then L/K is a
KG-Hopf Galois extension.
Assume that L/K is a Galois extension of fields with Galois group Γ.
Greither and Pareigis [GP87] showed that Hopf Galois structures on
L/K are in bijective correspondence with regular subgroups of Perm(Γ)
that are normalized by λ(Γ) = the image in Perm(Γ) of the left regular
representation λ : Γ→ Perm(Γ), λ(g)(x) = gx for g, x in Γ. So the
number of Hopf Galois structures on L/K depends only on the Galois
group Γ = Gal(L/K ).
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The type of T

If T is a regular subgroup of Perm(Γ) normalized by λ(Γ), then the
corresponding Hopf Galois structure on L/K is said to have type G if
T ∼= G.
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A sample of results

• [GP87] A Galois extension with non-abelian Galois group has at least
two Hopf Galois structures.
• [By96] A Galois extension with Galois group of order n has a unique
Hopf Galois structure if and only if (n, φ(n)) = 1.
• [Ch03] There exist non-abelian groups Γ so that a Galois extension
with Galois group Γ has Hopf Galois structures of type G for every
isomorphism type of group G of the same cardinality as Γ.
• [CC99] if Γ = Sn for n ≥ 5 then there are at least

√
n! Hopf Galois

structures on L/K .
• [BC12] If Γ is a non-cyclic abelian p-group of order pn, n ≥ 3, or is an
abelian group of even order n > 4, then L/K admits a non-abelian
Hopf Galois structure.
• [By04] if Γ is a non-abelian simple group, then L/K has exactly two
Hopf Galois structures.
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Motivation

Let L/K be a Galois extension of local fields of residue characteristic p
and Galois group Γ. Local Galois module theory attempts to
understand the structure of the valuation ring OL as a module over
OK Γ, or, if L/K is totally ramified case, over A, the associated order of
OL in OK Γ.
If L/K is H-Galois, then one can look at OL as a module over the
associated order AH in H. If A is a Hopf order, then OL is free over A.
[By00] has many examples of Kummer extensions for an isogeny of
Lubin-Tate formal groups, where OL is not free over its associated
order in K Γ but is free over its associated order in the Hopf algebra H
arising from the isogeny of the formal group.
In [By02] Byott studied the case of Galois extensions L/K of local
fields with cyclic or elementary abelian Galois group Γ of order p2. For
G elementary abelian and p odd, there are L/K with a unique Hopf
Galois structure, non-classical, for which the associated order A is a
Hopf order and OL is free over A.
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This talk

This talk deals entirely with Hopf Galois structures on Galois
extensions L/K with Galois group an elementary abelian p-group of
order pn, p odd. This case has drawn a significant amount of interest
in local Galois module theory, for example involving applications of
scaffold theory and constructions of Hopf orders by several
participants in the conference.
The first part of the talk is a summary of results from [Ch15] on the
number of Hopf Galois structures on a Galois extension L/K with
Galois group G = Cn

p for n large. The second part is more recent work.
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Translation to the holomorph

Let L/K be Galois with group Γ. A standard method to find, or at least
to count Hopf Galois structures on L/K of type G, is to transform the
problem to the holomorph Hol(G),= the normalizer of λ(G) in
Perm(G), where λ : G→ Perm(G) is the left regular representation.

Hol(G) = ρ(G) · Aut(G) ⊂ Perm(G)

where ρ(G) is the image of the right regular representation. As first
explicitly shown in [By96], there is a bijection between Hopf Galois
structures of type G and equivalence classes of regular embeddings
β : Γ→ Hol(G), where β ∼ β′ if there is an automorphism θ of G so
that

θβ(γ)θ−1 = β′(γ)

for all γ in Γ.
Transformation to the holomorph has yielded most of the known results
on the cardinality of Hopf Galois structures, and in particular, most of
the results cited above (but not those in [By02]).
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Counting Hopf Galois structures for G ∼= (Fn
p,+)

Let Γ ∼= G be elementary abelian of order pn. To count the number of
Hopf Galois structures of type G, we count regular subgroups of

Hol(G) ∼= Affn(Fp)

=

(
GLn(Fp) Fn

p
0 1

)
⊂ GLn+1(Fp).

A nice tool: use a result of [CDVS06] to transform the problem into one
of finding isomorphism types of commutative nilpotent Fp-algebra
structures on (Fp,+).
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Algebras to regular subgroups...

Let (G,+) be a finite elementary abelian p-group. Let A be a
commutative nilpotent algebra structure (G,+, ·) on G. Define a group
operation ◦ on the set G by

x ◦ y = x + y + x · y .

Then N = (G, ◦) is a group (because A is nilpotent), the group
associated to A. Define an embedding

τ : N → Hol(G) ⊂ Perm(G)

by
τ(x)(z) = x ◦ z = x + z + x · z

for all z in G. Then T = τ(N) is a regular subgroup of Hol(G) because
τ(x)(0) = x ◦ 0 = x for all x in G.
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...and back

Conversely, if T is an abelian regular subgroup of Hol(G), then

T = {τ(x) ∈ Hol(G) : x ∈ G}

where τ(x)(0) = x for all x . Use the multiplication in Hol(G) to define a
new group structure on G by τ(x)τ(y) = τ(x ◦ y). Then define a
multiplication on (G,+) by x · y = x ◦ y − x − y . This multiplication
makes (G,+, ·) into a commutative nilpotent Fp-algebra.

[CDVS06] prove that two commutative nilpotent Fp-algebras are
isomorphic iff the corresponding regular subgroups of Affn(Fp) are in
the same orbit under conjugation by elements of Aut(G) = GLn(Fp).

Lindsay Childs Commutative nilpotent rings and Hopf Galois structures Exeter, June, 2015 10 / 1



Isomorphism types of algebras

Determining the isomorphism types of commutative nilpotent
Fp-algebras of dimension n is a non-trivial problem (c.f. [Po08b]). But
an estimate of their number is possible.

There are several reasons why it is useful to focus on commutative
nilpotent Fp-algebras A with A3 = 0.
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Reason # 1: A lower bound on algebras A with A3 = 0

Let f3(n, r) = the number of isomorphism types of commutative
Fp-algebras N with dimFp A = n,dimFp (A/A2) = r , and A3 = 0. Then

f3(n, r) ≥ p( r2+r
2 )(n−r)−(n−r)2−r2

.

The idea is from Kruse and Price [KP70] ...
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Multiplications on G

Let A have A3 = 0. Let µ : A× A→ A be the multiplication. Then µ is
uniquely determined by a map

µ : A/A2 × A/A2 → A2,

Let A have an Fp-basis {x1, . . . , xr , y1, . . . , yn−r} where the first r
elements define modulo A2 a basis (x1, . . . , x r ) of A/A2 and
(y1, . . . , yn−r ) is a basis of A2. The ring structure on A is then defined
by n − r structure matrices Φ(k) = (φ

(k)
i,j ) defined by

x ix j =
n−r∑
k=1

φ
(k)
i,j yk .

Conversely, any set of n − r symmetric matrices Φ(k) defines a map
µ : A× A→ A which is commutative, and associative because A3 = 0.
So each choice of the symmetric structure matrices

{Φ(k)|k = 1, . . . ,n − r}
defines a commutative nilpotent algebra structure.
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Isomorphism types

Let S = {{Φ(1), . . . ,Φ(n−r)}} be the set of all possible sets of r × r
symmetric matrices. Then

|S| = p(n−r)( r2+r
2 ).

The group H = GLn−r (Fp)× GLr (Fp) acts on the set of bases for A/A2

and A2, hence on the set S of sets of symmetric matrices .
Two sets of symmetric matrices in the same orbit under the action of H
define isomorphic Fp-algebras, and conversely. So

f3(n, r) = # of orbits in S under the action of H.

So
|S| =

∑
orbits

# of elements in each orbit

≤
∑
orbits

|H| = f3(n, r) · |H|.
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Bounding f3(n, r)

Hence

f3(n, r) ≥ |S|
|H|

=
p( r2+r

2 )(n−r)

|GLn−r (Fp)| · |GLr (Fp)|
.

Now |GLk (Fp) < pk2
, so

f3(n, r) ≥ p( r2+r
2 )(n−r)

p(n−r)2+r2 = pb

where

b = (
r2 + r

2
)(n − r)− ((n − r)2 + r2).

Done.
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A bound on isomorphism types of algebras A with
A3 = 0

Setting f3(n) =
∑

r f3(n, r) and setting r = 2n/3 gives

f3(n) ≥ f3(n,2n/3) ≥ p
2n3
27 −

4n2
9 .
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Reason # 2 : Approximating the number of Hopf
Galois structures of type G

The number of Hopf Galois structures of type G on a Galois extension
L/K with Galois group G is equal to the number |R(G, [G])| of regular
subgroups of Perm(G) isomorphic to G that are normalized by λ(G).
By a formula in [By96],

|R(G, [G])| = |S(G, [G])|

where S(G, [G]) is the number of regular subgroups N ∼= G of Hol(G).

A regular subgroup N arising from a comm. nilpotent algebra A is
isomorphic to G iff Ap = 0 (c.f. [FCC12]) .
Let fp(n) = # of isomorphism types of A with Ap = 0.
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An upper bound

For each isomorphism type A of commutative nilpotent algebra the
number of regular subgroups of Hol(G) corresponding to A is equal to
the size of the orbit under GLn(Fp) = Aut(G) of one regular subgroup
corresponding to A. So

fp(n) ≤ |S(G, [G])| ≤ fp(n) · |GLn(Fp)|.

Of course |GLn(Fp)| ≤ pn2
.

A result of Poonen [Po08a] yields

fp(n) ≤ p
2
27 n3+O(n8/3),

so
|R(G, [G])| = |S(G, [G])| ≤ p

2
27 n3+O(n8/3) · pn2

,

so
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The point

Let G be an elementary abelian p-group of order pn, L/K a Galois
extension of fields with Galois group G. Then the number |R(G, [G])|
of Hopf Galois structures of type G on L/K satisfies

p
2

27 n3− 4
9 n2 ≤ f3(n) ≤ |R(G, [G])| ≤ p

2
27 n3+O(n8/3).

For large n, the number of Hopf Galois structures of type G on L/K
arising from algebras A with A3 = 0 is of the same order of magnitude
as the set of all Hopf Galois structures of type G.
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Reason # 3: Algebras A with A3 = 0 yield Hopf Galois
structures directly by descent

The rest of this talk is post [Ch15].
As always, G ∼= (Fn

p,+).
Given a commutative nilpotent algebra A and a fixed basis of A, we
obtain a regular subgroup T of Hol(G). If Ap = 0, then the regular
subgroup is isomorphic to G. To find Hopf Galois structures on a
Galois extension L/K with Galois group Γ ∼= G from such algebras, the
usual way is to translate from the holomorph to Perm(G):
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comm. algs A, Ap = 0
with fixed basis

↓
reg. subgps T ∼= G

of Hol(G)
↓

equiv. classes of M ∼= G ⊂ Perm(G)
β : G→ T ⊂ Hol(G) ←→ normalized by λ(G)

l
Hopf Galois structures of type G
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When A3 = 0

But if A3 = 0, we can proceed more directly.
Proposition: Given a commutative nilpotent Fp-algebra A and an
associated regular subgroup T ⊂ Perm(G), then T is normalized by
λ(G), the image in Perm(G) of the left regular representation of G, if
and only if A3 = 0.
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So if A3 = 0, the picture becomes

comm. algs A with A3 = 0
↓

regular subgroups T ∼= G
of Hol(G) ⊂ Perm(G) normalized by λ(G)

l
Hopf Galois structures of type G
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Sketch of proof

Suppose A is a comm. nilpotent algebra, T = {τ(x) : x ∈ A} ⊂ Hol(G).
We have that for all z in G,

τ(x)(z) = x + z + x · z

while
λ(y)(z) = y + z.

Then T is normalized by λ(G) iff for all x , y in A there is some w in A
so that

λ(y)τ(x)λ(−y) = τ(w).

Applying both sides to z = 0 in G gives w = x − x · y . Then

λ(y)τ(x)λ(−y)(z) = τ(x − x · y)(z)

is true for all x , y , z iff x · y · z = 0 for all x , y , z in A, iff A3 = 0.
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Finding the Hopf Galois structure

Let L/K be a Galois extension of fields with Galois group G = (Fn
p,+).

Given A, a commutative nilpotent Fp-algebra structure on the group G,
with A3 = 0. Let T = {τ(x) : x ∈ G} be the corresponding regular
subgroup of Perm(G), acting on G by τ(x)(y) = x ◦ y .
Then the corresponding Hopf Galois structure on L/K is determined
by:
i) the action of T on GL = HomL(LG,L) =

∑
y∈G Ley by

τ(x)(ey ) = ex◦y .

Then GL/L is an LT -Hopf Galois extension of L
ii) the action of λ(G) on T , by

λ(z)τ(x)λ(−z) = τ(x − x · z).

Then L is a H-Hopf Galois extension of K where

H = (LT )G

(descent)
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In terms of the multiplication on A,

H = {
∑
x∈G

bxτ(x)|bx−x ·z = bz
x for all z in G}

and H acts on L by

(
∑
x∈G

bxτ(x))(a) =
∑
x∈G

bxa−x+x2
.

(−x + x2) ◦ x = 0)
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Examples of A with n − r = 1

Given a basis x1, . . . , xn for G ∼= (Fn
p,+) we may identify Hol(G) with

Affn(Fp) =

(
GLn(Fp) Fn

p
0 1

)
⊂ GLn+1(Fp).

We look at a particularly nice class of commutative nilpotent algebras.
Let A be a commutative nilpotent Fp-algebra with dim(A) = n,
dim(A2) = 1, A3 = 0. Choose a basis (x1, . . . , xn−1, xn) with A2 = 〈xn〉.
Then for all i , j ,

xixj = φi,jxn,

so A is determined by that basis and the single symmetric n × n
structure matrix Φ = (φij) satisfying

xxT = Φxn

(where xT = (x1, . . . , xn)).
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A regular subgroup from A

Since Φ is symmetric, there is a basis {zj} of A so that the structure
matrix Φ of A relative to that basis is a diagonal matrix
D = diag(d1, . . . ,dn) with dn = 0.
Using that basis to identify Hol(G) with Affn(Fp), the regular subgroup
T corresponding to A is T = {τ(r)} where

τ(r) =

In−1 0 rn−1

rT
d 1 rn
0 0 1


where rT

n−1 = (r1, . . . , rn−1), and rT
d = (d1r1, . . . ,dn−1rn−1).

These regular subgroups and their conjugates under GLn(Fp) yield all
the non-trivial regular subgroups for n = 2 and all but one orbit for
n = 3.
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Hopf Galois structures corresponding to A

To determine the number of Hopf Galois structures arising in that way
from A, find the stabilizer of the regular subgroup T under conjugation
by the elements of Aut(G) = GLn(Fp).
For algebras A with A3 = 0 and dim(A2) = 1 that is not difficult.
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Start with a nice basis

We may choose a basis of A so that A has structure matrix

Φ = diag(Ds,0)

where Ds = diag(1, . . . ,1, s) is a k × k matrix with s = 1 or a
non-square in Fp. We may choose s to always be 1 if k is odd. So we
have three cases.
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Proposition. Let A be a commutative nilpotent Fp-algebra of dimension
n with A3 = 0 and dim(A2) = 1. Suppose the structure matrix of A is
Φ = diag(Ds,0) where Ds is k × k and
1) k = 2m + 1, s = 1
2) k = 2m, s = 1
3 k = 2m, s is a non-square in Fp.
Then the number of distinct regular subgroups of Affn(Fp) associated
to A is
1)

|GLn(Fp)|
(p−1

2 ) · |GO2m+1| · |GLn−1−k (Fp)| · pk(n−1−k)+(n−1)

2)
|GLn(Fp)|

(p − 1) · |GO+
2m| · |GLn−1−k (Fp)| · pk(n−1−k)+(n−1)

3)
|GLn(Fp)|

(p − 1) · |GO−2m| · |GLn−1−k (Fp)| · pk(n−1−k)+(n−1)

Lindsay Childs Commutative nilpotent rings and Hopf Galois structures Exeter, June, 2015 31 / 1



n = 2,3,4

For n = 2,3 these agree with results obtained previously (e.g. in
[Ch05] for n = 3).
For n = 4 there are four subcases. As above, s is a non-square in Fp.

(d1,d2,d3) number of regular subgroups
(1,0,0) (p2 + 1)((p + 1)(p3 − 1)
(1,1,0) p(p2 + 1)(p + 1)(p3 − 1)(p + 1)/2
(1, s,0) p(p4 − 1)(p3 − 1)/2
(1,1,1) p2(p4 − 1)(p3 − 1)

The sum exceeds p9.
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Connections to Galois module theory?

Suppose L/K is Galois with group G elementary abelian of order p2.
In that setting it is well known that there are p2 − 1 non-classical Hopf
Galois structures on L/K . [By02] describes them as follows.
Pick a subgroup 〈τ〉 ⊂ G of order p and let G = 〈σ, τ〉. Define the
regular subgroup Jd ,τ = 〈ρ, µ〉 of Perm(G) by

ρ(σkτ l) = σkτ l−1

µ(σkτ l) = σk−1τ l+dk−d

for d = 0,1, . . . ,p − 1. For d = 0 one recovers the classical Hopf
Galois structure. For d 6= 0, every Jd ,τ is normalized by λ(G), hence
the group ring LJd ,τ descends to a K -Hopf algebra that yields a Hopf
Galois structure on L/K .
So there are p − 1 non-classical Hopf Galois structures for each of the
p + 1 choices of the order p subgroup 〈τ〉 of G.
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[By02]

Now suppose L/K is totally ramified with break numbers

pj − 1 = t1 < t2 = p2i − 1.

Let Gt2 be the corresponding ramification group of order p. Then
[By02] showed

• If t1 < t2 and OL is Hopf Galois over OK with respect to a Hopf order
in Hd ,τ , then 〈τ〉 must = Gt2 .

• If j < pi and i ≥ 2j , then OL is Hopf Galois over OK for a Hopf order
in Hd ,τ for a unique d , and Hd ,τ is non-classical (that is, d 6= 0) if and
only if (p + 1)j = pi + 1.
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Our regular subgroups

The regular subgroup TA of Aff2(Fp) obtained from the nilpotent
Fp-algebra A = 〈x1, x2〉 with x2

1 = x2 is

TA =

〈1 0 1
1 1 0
0 0 1

 ,

1 0 0
0 1 1
0 0 1

〉

=


1 0 r1

r1 1 r2
0 0 1


with respect to the basis (x1, x2) of G. We get p2 − 1 others by

conjugating TA by
(

P 0
0 1

)
where P is in GL2(Fp).
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The group Jd ,τ

We can embed Byott’s group Jd ,τ in Aff2(Fp) where σ = x1, τ = x2 by

ρ =

1 0 0
0 1 −1
0 0 1

 , µ =

1 0 −1
d 1 −d
0 0 1

 .

For d 6= 0 and e with de = 1,

diag(1,e,1)Jd ,τdiag(1,d ,1) = TA.

So Byott’s regular subgroups are conjugates of our group TA.
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Guidance from Byott

[By02] says that for doing Galois module theory, choose the basis
x1, x2 for constructing A so that x2 generates the ramification group Gt2
of order p.

If we then conjugate Jd ,τ by
(

P−1 0
0 1

)
, the resulting regular subgroup

is Jf ,y2 where P
(0

1

)
are the coordinates of y2 relative to the basis

(x1, x2). Thus, to preserve the ramification group 〈x2〉, P must be lower
triangular. (For n = 2 we may as well assume P is diagonal.)
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Which Hopf Galois structures might be useful?

For general n, we should start with a basis for G that corresponds to
the ramification filtration of G. Given a commutative nilpotent algebra A
with a nice multiplication using that basis, the interesting regular
subgroups should be conjugates of the corresponding regular
subgroup TA by elements of GLn(Fp) that respect the ramification
filtration of G.
In particular, if G has n distinct ramification group, one should restrict
interest to regular subgroups obtained from TA by conjugating by lower
triangular matrices P.
That significantly reduces the number of relevant Hopf Galois
structures associated to a commutative nilpotent algebra A: for
example, for n = 2, from p2 − 1 to p − 1.
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When dim(A2) = 1

Let A be a commutative nilpotent algebra A with dim(A2) = 1,A3 = 0
and suppose that relative to a basis that respects the ramification
filtration, the structure matrix Φ = diag(Ds,0) with Ds k × k . Let TA be
the corresponding regular subgroup. How many distinct regular
subgroups do we get by conjugating by lower triangular
automorphisms P? by diagonal automorphisms P?
Proposition: Let L/K of dimension pn have n distinct break numbers.
Then the number of distinct regular subgroups that respect the
ramification filtration of L/K , is

= 2(
p − 1

2
)kp

(k−1)k
2 .

If we restrict to diagonal automorphisms, then the number

= 2(
p − 1

2
)k .

These numbers depend only on k (and not on n). For k = 1 we obtain
p − 1, which in particular yields Byott’s result for n = 2.
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Extending [By02] to n = 3?

To finish up, it appears that to extend [By02] to the case n = 3, one
needs
1. a complete description of Hopf Galois structures on L/K with Galois
group G.
For p > 3 all five isomorphism types of commutative nilpotent
Fp-algebras A of dimension 3 satisfy Ap = 0, hence yield Hopf Galois
structures of type G. So they all yield distinct orbits of regular
subgroups of Aff3(Fp). One orbit is that of λ(G), and three others arise
from A with dim(A2) = 1:

Φ = diag(1,0,0),Φ = diag(1,1,0),Φ = diag(1, s,0).

They each yield Hopf Galois structures directly, as in [By02], without
translating from the holomorph, and we just described number of Hopf
Galois structures that preserve the ramification filtration when there
are three distinct break numbers.
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The other is the algebra AJ = 〈x〉 with x4 = 0. The corresponding
regular subgroups of Aff3(Fp) corresponding to AJ are not normalized
by λ(G), so one has to translate from the holomorph to Perm(G). That
is doable but not as clean as the other cases.
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Hopf Galois structure plus...

But then one also needs:

2. a complete description of Hopf orders, in particular, realizable
orders, in the K -Hopf algebras of K -dimension 3 arising from the Hopf
Galois structures.

As the conference showed, this remains work in progress. So

3. a nice criterion (e.g. a congruence condition) to match up the
extension L/K with a suitable Hopf order.

is not available either.
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