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Scaffolds give a new approach to Galois module structure in local fields.

When they exist, they give a lot of information in purely numerical form,
but interpreting this to get explicit module-theoretic statements requires
further effort.

This is joint work with Griff Elder and Lindsay Childs.

Main reference:
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Motivation I: Inseparable Extensions
Can we ”do Galois theory” for inseparable extensions?

Take: K a field of characteristic p > 0;
L a primitive, purely inseparable extension of K of degree pn:

L = K (x) with xp
n

= α ∈ K×\K× p.

The only K -automorphism of L is the identity, but another familiar sort of
K -linear operator is given by (formal) differentiation.
Let δ : L −→ L be the K -linear map given by

δ(x j) = jx j−1.

This makes sense as δ(xp
n
) = 0 = δ(α), but depends on the choice of

generator x . We have
δ(x j) = 0 if p | j ;

δp = 0.
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Motivation I: Inseparable Extensions
We want to introduce operators δ(s) that “behave like”

1

s!

d s

dx s
.

For 0 ≤ s ≤ pn − 1, write

s = s(0) + ps(1) + · · ·+ pn−1s(n−1) with 0 ≤ s(i) ≤ p − 1.

Then define a K -linear map δ(s) : L −→ L by

δ(s)(x j) =

(
j

s

)
x j−s =

[
n−1∏
i=0

(
j(i)
s(i)

)]
x j−s .

(Think of δ(pi ) as differentiation with respect to xp
i
, where we pretend

that x , xp, xp
2
, . . . , xp

n−1
are independent variables.)

Notation: For 0 ≤ s, j ≤ pn − 1,

s � j means s(i) ≤ j(i) for 0 ≤ i ≤ n − 1.

Then δ(s)(x j) = 0 unless s � j .
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Motivation I: Inseparable Extensions

We have

δ(s)δ(t) =

(
s + t

s

)
δ(s+t).

(This is 0 if s + t ≥ pn.)

The commutative K -algebra A with basis (δ(s))0≤s≤pn−1 acts on L.

This is analogous to action of the group algebra in standard Galois theory.
The group algebra is a Hopf algebra, and its action is compatible with the
comultiplication. In the same way, if we make A into a Hopf algebra with
comultiplication

δ(s) 7→
s∑

r=0

δ(r) ⊗ δ(s−r),

then L is an A-Hopf-Galois extension of K .

A is the divided power Hopf algebra of dimension pn.
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Motivation I: Inseparable Extensions

Now bring in ramification.

Say K is the local field Fpf ((T )) with valuation vK (T ) = 1.

Suppose vK (α) = −b with p - b.

So L/K is totally ramified and vL(x) = −b.

(x j)0≤j≤pn−1 is a K -basis of L with valulations distinct modulo pn, and

vL(δ(s) · x j) =

{
vL(x j) + bs if s � j ,

∞ otherwise.
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Motivation I: Inseparable Extensions

The action becomes even more transparent if we adjust our bases by
suitable units: set

Ψ(s) =

[
n−1∏
i=0

s(i)!

]
δ(s), y (j) =

[
n−1∏
i=0

j(i)!

]−1

x j .

Then
vL(y (j)) = vL(x j) = −jb

and

Ψ(s) · y (j) =

{
y (j−s) if s � j ,

0 otherwise.
.

The elements Ψ(pi ) and y (j) form a prototypical example of a scaffold.
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Motivation II: Galois Module Structure in Prime Degree

Let K be a finite extension of Qp with absolute ramification index
vK (p) = e.

Let L/K be a totally ramified Galois extension of degree p.

Let G = 〈σ〉 = Gal(L/K ).

We want to study the valuation ring OL of L as a Galois module. As L/K
is wildly ramified, OL cannot be free over OK [G ], so consider the
associated order

A := {α ∈ K [G ] : α ·OL ⊆ OL}.

This is the largest order in K [G ] over which OL is a module.

Basic Question: When is OL a free module over A?
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Motivation II: Galois Module Structure in Prime Degree
L/K has ramification break b characterised by

∀x ∈ L\{0}, vL((σ − 1) · x) ≥ vL(x) + b, with equality unless p | vL(x).

Then
1 ≤ b ≤ ep

p − 1
, p - b unless b =

ep

p − 1
.

We assume b ≤ ep

p − 1
− 1.

Bertrandias, Bertrandias and Ferton (1972) showed that

OL is free over A⇔ (b mod p) | p − 1.

Ferton (1972) determined when a given power Ph of the maximal ideal P
of OL is free over its associated order, in terms of the continued fraction
expansion of b/p.
Analogous results in characteristic p (so K = Fpf ((T )) and e =∞) were
given by Aiba (2003), de Smit & Thomas (2007) and Huynh (2014).
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Motivation II: Galois Module Structure in Prime Degree

These results all depend on the following idea:

Let Ψ = σ − 1 and choose x ∈ L with vL(x) = b.

For 0 ≤ j ≤ p − 1 set yj = Ψj · x , so vL(yj) = (j + 1)b.

Then, for 0 ≤ s ≤ p − 1,

Ψs · yj

{
= ys+j if s + j ≤ p − 1;

≡ 0 (mod x s+j PT) otherwise

where
T = ep − (p − 1)b.

Then Ψ and the yj form a scaffold.
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What is a Scaffold?

Let K be a local field of residue characteristic p > 0, let π ∈ K with
vK (π) = 1, and let L/K be a totally ramified extension of degree pn.

Fix b ∈ Z with p - b and for each t ∈ Z define

a(t) = a(t)(0) + pa(t)(1) + · · ·+ pn−1a(t)(n−1) := (−b−1t) mod pn.

A scaffold of shift b and infinite tolerance on L consists of

elements λt ∈ L with vL(λt) = t for each t ∈ Z;

K -linear maps Ψ1,Ψ2, . . . ,Ψn : L −→ L such that

Ψi · λt =

{
λt+pn−ib if a(t)(n−i) ≥ 1,

0 if a(t)(n−i) = 0,

and Ψi · K = 0.
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What is a Scaffold?

For 0 ≤ s ≤ pn−1, set

Ψ(s) = Ψ
s(0)
n Ψ

s(1)

n−1 · · ·Ψ
s(n−1)

1 .

Then

Ψ(s) · λt =

{
λt+sb if s � a(t),

0 otherwise.

Moreover L is a free module over the commutative K -algebra
A = K [Ψ1, . . . ,Ψn] on the generator λb.

Example: K = Fpf ((T )) and L = K (x) purely inseparable of degree pn,

b = −vL(x), λcpn−bj = T cy (j) and Ψi = δ(pn−i ).
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What is a Scaffold?

Now fix T > 0. A scaffold of tolerance T is similar except that the
formula for the action of A on L only holds “up to an error”:

Ψ(s) · λt ≡

{
λt+sb if s � a(t),

0 otherwise.

where the congruence is modulo terms of valuation ≥ t + sb + T. (Then A
no longer need be commutative.)

Example: L/K totally ramified Galois extension of degree p. Ψ1 = σ − 1,
and λcpn+b(j+1) = πcΨj

1 · x where vL(x) = b; here T = ep − (p − 1)b.

Remark: In the BCE paper, we allowed a slightly more general definition
of scaffold.
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When do Galois Scaffolds Exist?

Suppose L/K is a totally ramified Galois extension of degree pn.

Take a generating set σ1, . . . , σn of G = Gal(L/K ) so that the subgroups

Hi = 〈σn−i+1, . . . , σn〉, 0 ≤ i ≤ n

satisfy |Hi | = pi and refine the ramification filtration.

Then we have (lower) ramification breaks b1 ≤ b2 ≤ · · · ≤ bn,
characterised by

∀y ∈ L×, vL((σi − 1) · y) ≥ vL(y) + bi ,

with equality if and only if p - vL(y).
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When do Galois Scaffolds Exist?

Now if x is any element of the intermediate field Ki = LHn−i of degree pi

over K , then pn−i | vL(x), and if pn−i+1 - vL(x) then

vL((σi − 1) · x) = vL(x) + pn−ibi .

We now make 3 assumptions:

Assumption 1 (very weak): p - b1.

Assumption 2 (fairly weak): bi ≡ bn (mod pi ) for each i .
If G is abelian, this holds by the Hasse-Arf Theorem.

Now set Ψn = σn − 1.

Assumption 3 (pretty strong):
For 1 ≤ i ≤ n − 1, we can replace σi − 1 with Θi ∈ K [Hn+1−i ] so that

vL(Θi · y) = vL(y) + pn−ibi ∀y ∈ L× with vL(y)(n−i+1) 6= 0.
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When do Galois Scaffolds Exist?

Now set
Ψi = π(bn−bi )/pi Θi ,

Ψ(s) = Ψ
s(0)
n Ψ

s(1)

n−1 · · ·Ψ
s(n−1)

1 .

Pick y ∈ L with VL(y) = b and set

λcpn+b(s+1) = πcΨ(s) · y .

Then we have a scaffold of tolerance 1.

Having higher tolerance amounts to the Ψp
i being ”close enough” to 0.
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When do Galois Scaffolds Exist?

For K of characteristic p , and any b 6≡ 0 (mod p) and n ≥ 1, Elder
constructed a large family of elementary abelian extensions L/K of degree
pn with unique ramification number b which admit a scaffold of tolerance
∞. (These are the “nearly one-dimensional extension”.) This can be made
to work in characteristic 0 (with finite tolerance).

So, although extensions admitting a scaffold are quite special, there are
plenty of examples.

In particular, let L/K be a Galois extension which is totally and weakly
ramified (i.e. the only ramification break is 1). If K has characteristic p,
then K has a scaffold of infinite tolerance. If K has characteristic 0, it has
a scaffold of “high enough” tolerance 2pn − 1 provided e ≥ 3.
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Consequences of Having of a Scaffold

Suppose L/K has a scaffold with shift b and tolerance T ≥ 2pn − 1.
Consider any fractional ideal Ph of OL as a module over its associated
order

A = Ah := {α ∈ K [G ] : α ·Ph ⊆ Ph}.

We assume without loss of generality that b ≥ h > b − pn.
For 0 ≤ s ≤ pn − 1 define

d(s) =

⌊
sb + b − h

pn

⌋
,

w(s) = min{d(s + j)− d(j) : j � pn − 1− s}.

So d(0) = 0 and w(s) ≤ d(s).
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Consequences of Having of a Scaffold

Theorem

For L/K admitting a scaffold as above,

we have an explicit description of the associated order: Ah has
OK -basis π−w(s)Ψ(s) for 0 ≤ s ≤ pn − 1.

Ph is free over Ah if and only if w(s) = d(s) for all s; in this case,
any y ∈ L with vL(y) = b is a generator.

This gives a purely numerical (but not very transparent) criterion for
freeness. Extracting an explicit list of ideals which are free is not easy!
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Consequences of Having of a Scaffold

Moreover, following ideas of de Smit and Thomas (in case degree p,
characteristic p), we also have

Theorem

the minimal number of generators for Ph as an Ah-modules is

#{u : d(u) > d(u − s) + w(s)∀s : 0 ≺ s � u}.

(The minimal number of generators is 1 ⇔ Ph is free over A.)

Let M be the maximal ideal of the local ring Ah and let κ be the
residue field of OK . Then the embedding dimension of Ah is

dimκ(M/M2) = #{u : w(u) > w(u − s) + w(s)∀s : 0 ≺ s ≺ u}.
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Weakly Ramified Extensions

As an illustration of these results, let L/K be totally and weakly ramified
of degree pn (so G = Gal(L/K ) is elementary abelian). Suppose p 6= 2
and either char(K ) = p or e ≥ 3.

Then b = 1, and we consider Ph with 1− pn < h ≤ 1.

First consider two special cases:

h = 1: P is free over OK [G ] which has embedding dimension n + 1.

h = 0: OL is free over OK

G , π−1
∑
g∈G

g

, which has embedding

dimension n + 2.

This leaves us with 1− pn < h < 0
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Weakly Ramified Extensions
Put

m = h + pn − 1, so 0 < m < pn − 1; ;

k = max(m, pn −m).

Then

d(s) =

{
1 if s ≥ m;

0 otherwise;

w(s) =

{
1 if s ≥ k ;

0 otherwise.

So

Ph is free ⇔ w(s) = d(s)∀s

⇔ h ≥ 1

2
(3− pn).

Thus (including cases h = 1, 0) just over half the ideals are free.
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Weakly Ramified Extensions

when Ph is not free, 2 + α(m)− β(m) generators are required;

the embedding dimension of Ah is n + 2 + α(k);

where α(s) = #{i : s(i) 6= p − 1 and i > vp(s)},

β(s) = max{c : 0 ≤ c < n − vp(s), s(n−1) = . . . = s(n−c) = 1
2 (p − 1)}.

Example: pn = 56 = 15625, h = −7884.
As 1− pn < h < 1

2 (3− pn), Ph is not free over its associated order.

m = h + pn − 1 = 7740 = 2214305,

so m(0) = 0, m(1) = 3, m(2) = 4, m(3) = 1, m(4) = 2, m(5) = 2, and

α(m) = 3, β(m) = 2.

Also, k = pn −m = 2230205, so α(k) = 4.

Hence Ph requires 2 + α(m)− β(m) = 3 generators over its associated
order, and the embedding dimension of the associated order is
n + 2 + α(k) = 12.
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