Hopf-Galois Theory and Galois Module Structure University of Exeter.

Induced Hopf Galois structures

Teresa Crespo, Anna Rio and Montserrat Vela

June 25th, 2015

Let K/k be a separable field extension of degree n, \widetilde{K} its Galois closure, $G = \text{Gal}(\widetilde{K}/k)$, $G' = \text{Gal}(\widetilde{K}/K)$. A Hopf Galois structure on K/k may be given, equivalently, by

- a finite cocommutative k-Hopf algebra \mathcal{H} and a Hopf action of \mathcal{H} on K, i.e a k-linear map $\mu : \mathcal{H} \to \operatorname{End}_k(K)$ inducing a bijection $K \otimes_k \mathcal{H} \to \operatorname{End}_k(K)$. (Chase-Sweedler)
- a regular subgroup N of S_n normalized by $\lambda(G)$, where $\lambda : G \to S_n$ is the morphism given by the action of G on the left cosets G/G'. (Greither-Pareigis) If $N \subset \lambda(G)$, equivalently N is a normal complement of G' in G, K/k is called almost classically Galois.
- a group monomorphism $\varphi : G \to \operatorname{Hol}(N)$ such that $\varphi(G')$ is the stabilizer of 1_N , where $\operatorname{Hol}(N) = N \rtimes \operatorname{Aut} N \hookrightarrow \operatorname{Sym}(N)$ is defined by sending $n \in N$ to left translation by n and $\sigma \in \operatorname{Aut} N$ to itself. (Childs, Byott)

 $N \subset S_n$ regular, normalized by $\lambda(G) \leftrightarrow \mathcal{H} = \widetilde{K}[N]^G$

{ Hopf subalgebras of \mathcal{H} } \leftrightarrow {G-stable subgroups of N}

For N' a *G*-stable subgroup of N, $K^{N'} := K^{\mathcal{H}'}$ for \mathcal{H}' the Hopf subalgebra of \mathcal{H} corresponding to N'.

Theorem 1.

$$G\begin{bmatrix} K & K/k \text{ finite Galois} \\ G & G = \operatorname{Gal}(K/k) \\ F & G' = \operatorname{Gal}(K/F) \\ G & G = G' \ltimes H \\ r = [K:F], t = [F:k], n = [K:k] \end{bmatrix}$$

Assume that

- N_1 gives F/k a Hopf Galois structure and
- N_2 gives K/F a Hopf Galois structure.

Then $N_1 \times N_2$ gives K/k a Hopf Galois structure.

Proof.

 N_1 gives F/k a Hopf Galois structure $\Leftrightarrow \exists \varphi_1 : G \to \operatorname{Hol}(N_1)$, with kernel $\operatorname{Gal}(K/\widetilde{F})$, such that $\varphi_1(G') = Stab(1_{N_1})$.

 N_2 gives K/F a Hopf Galois structure $\Leftrightarrow \exists \varphi_2 : G' \hookrightarrow \operatorname{Hol}(N_2)$ such that $\varphi_2(1_{G'}) = Stab(1_{N_2})$.

If $g, g' \in G, g = xy, g' = x'y'$ with $x, x' \in H, y, y' \in G'$, since $H \triangleleft G$, we have gg' = (xx'')yy', for some $x'' \in H$. Hence, the map

$$\overline{\varphi}: \quad \begin{array}{ccc} G & \to & \operatorname{Hol}(N_1) \times \operatorname{Hol}(N_2) \\ g = xy & \mapsto & (\varphi_1(g), \varphi_2(y)) \end{array}$$

is a group monomorphism. We define now

$$\iota : \operatorname{Hol}(N_1) \times \operatorname{Hol}(N_2) \hookrightarrow \operatorname{Hol}(N_1 \times N_2)$$
$$((n_1, \sigma_1), (n_2, \sigma_2)) \mapsto ((n_1, n_2), \sigma)$$

where $\sigma(n_1, n_2) := (\sigma_1(n_1), \sigma_2(n_2))$, and consider

 $\varphi: G \xrightarrow{\overline{\varphi}} \operatorname{Hol}(N_1) \times \operatorname{Hol}(N_2) \xrightarrow{\iota} \operatorname{Hol}(N_1 \times N_2).$

We check $\varphi(1_G) = Stab(1_{N_1 \times N_2})$: for $g = xy \in G, x \in H, y \in G', \varphi(g)(1_{N_1 \times N_2}) = 1_{N_1 \times N_2} \Leftrightarrow \varphi_1(g)(1_{N_1}) = 1_{N_1}$ and $\varphi_2(y)(1_{N_2}) = 1_{N_2} \Leftrightarrow g \in G'$ and $y = 1_{G'} \Leftrightarrow g = 1_G$.

A Hopf Galois structure on a Galois extension K/k with Galois group G will be called

induced if it is obtained as in Theorem 1 for some field F with $k \subsetneq F \subsetneq K$ and given Hopf Galois structures on F/k and K/F;

split if the corresponding regular subgroup of Sym(G) is the direct product of two nontrivial subgroups.

Corollary. A Galois extension K/k with Galois group $G = H \rtimes G'$ has at least one split Hopf Galois structure of type $H \times G'$.

Proof. Let $F = K^{G'}$ and let \widetilde{F} be the normal closure of F in K. Then K/F is Galois with group G' and F/k is almost classically Galois of type H since H is a normal complement of $\operatorname{Gal}(\widetilde{F}/F)$ in $\operatorname{Gal}(\widetilde{F}/k)$. These two Hopf Galois structures induce a Hopf Galois structure on K/k of type $H \times G'$.

A Galois extension with Galois group G has an induced Hopf Galois structure of type N in each of the following cases.

G	N
$S_3 = C_3 \rtimes C_2$	$C_6 = C_3 \times C_2$
$D_{2n} = C_n \rtimes C_2$	$C_n \times C_2$
$S_n = A_n \rtimes C_2$	$A_n \times C_2$
$A_4 = V_4 \rtimes C_3$	$V_4 \times C_3$
Frobenius group	
$G = H \rtimes G'$	$H \times G'$
$\operatorname{Hol}(M) = M \rtimes \operatorname{Aut}(M)$	$M \times \operatorname{Aut}(M)$

A Frobenius group G is a transitive permutation group of some finite set X, such that every $g \in G \setminus \{1\}$ fixes at most one point of X and some $g \in G \setminus \{1\}$ fixes a point of X. We have $G = H \rtimes G'$, where H is the Frobenius kernel, i.e. the subgroup of G whose nontrivial elements fix no point of X, and G' is a Frobenius complement, i.e. the stabilizer of one point of X.

A semi-direct product $G = H \rtimes G'$ is a Frobenius group iff $C_G(h) \subset H$ for all $h \in H \setminus \{1\}$, and $C_G(g') \subset G'$ for all $g' \in G' \setminus \{1\}$.

Split non-induced Hopf Galois structures1. The quaternion group

$$H_8 = \langle i, j | i^4 = 1, i^2 = j^2, ij = ji^3 \rangle = \{1, i, i^2, i^3, j, ij, i^2j, i^3j\}$$

is not a semi-direct product of two subgroups. The action of H_8 on itself by left translation induces

$$\lambda : H_8 \rightarrow \text{Sym}(H_8)$$

$$i \mapsto (1, i, i^2, i^3)(j, ij, i^2j, i^3j)$$

$$j \mapsto (1, j, i^2, i^2j)(i, i^3j, i^3, ij)$$

Then, $\lambda(H_8)$ normalizes

 $N = \langle (1, i^2)(i, i^3)(j, i^2j)(ij, i^3j), (1, i^3)(i, i^2)(i, ij)(i^2j, i^3j), (1, i^3j)(i, j)(i^2, ij)(i^3, i^2j) \rangle$ which is a regular subgroup of Sym(H₈) isomorphic to $C_2 \times C_2 \times C_2$. Hence a Galois extension with Galois group H₈ has a split Hopf Galois structure of type $C_2 \times C_2 \times C_2$. **2.** In the case $G = H \times G'$, i.e. F/k Galois, the Galois structures of K/F and F/k induce the Galois structure on K/k:

$$G \to G/G' = H \xrightarrow{\rho} \operatorname{Hol}(H)$$
 and $G' \xrightarrow{\rho} \operatorname{Hol}(G')$ give $G \xrightarrow{\rho} \operatorname{Hol}(G)$.

Let us consider a Galois extension K/k with Galois group $G \simeq C_p \times C_p$ (with p prime). There are p^2 different Hopf Galois structures for K/k (Byott,1996).

- **Case** p = 2: There is only one structure of type $C_2 \times C_2$, which is the classical one. The remaining 3 are of cyclic type. The extension K/k has 3 different quadratic subextensions but all of them give rise to the same Hopf Galois structure, corresponding to $N = V_4 \subset S_4$.
- **Case** p > 2: Hol (C_{p^2}) has no transitive subgroup isomorphic to $C_p \times C_p$. All p^2 Hopf Galois structures are split: $N \simeq C_p \times C_p$. Only the classical structure is induced. The extension K/k has p+1 different subextensions of degree p but all of them give rise to the classical structure.

We obtain then that a split Hopf Galois structure on a Galois extension K/k may be induced by Hopf Galois structures on K/F and F/k, for different intermediate fields F.

Given a Galois extension K/k of degree n with Galois group G and a regular subgroup $N = N_1 \times N_2$ of S_n giving K/k a split Hopf Galois structure, under which conditions is this Hopf Galois structure induced?

Theorem 1 gives that the following conditions are necessary.

1) N_1 and N_2 are *G*-stable,

2) If $F = K^{N_2}$ and G' = Gal(K/F), then G' has a normal complement in G.

Theorem 2. Let K/k be a finite Galois field extension, n = [K : k], G = Gal(K/k). Let K/k be given a split Hopf Galois structure by a regular subgroup N of S_n such that $N = N_1 \times N_2$ with N_1 and N_2 G-stable subgroups of N. Let $F = K^{N_2}$ be the subfield of K fixed by N_2 and let us assume that G' = Gal(K/F) has a normal complement in G.

Then K/F is Hopf Galois with group N_2 and F/k is Hopf Galois with group N_1 . Moreover the Hopf Galois structure of K/k given by N is induced by the Hopf Galois structures given by N_1 and N_2 . *Proof.* Since K/k is Hopf Galois with group N, we have a monomorphism

$$\begin{aligned} \varphi : \ G \ & \to \ \operatorname{Hol}(N) = N \rtimes \operatorname{Aut} N \\ g \ & \mapsto \ \varphi(g) = (n(g), \sigma(g)) \end{aligned}$$

such that $\varphi(1_G)$ is the stabilizer of 1_N . Let us see $\varphi(G) \subset \iota(\operatorname{Hol}(N_1) \times \operatorname{Hol}(N_2))$, for

$$\iota : \operatorname{Hol}(N_1) \times \operatorname{Hol}(N_2) \hookrightarrow \operatorname{Hol}(N_1 \times N_2)$$
$$((n_1, \sigma_1), (n_2, \sigma_2)) \mapsto ((n_1, n_2), \sigma).$$

For $i = 1, 2, N_i$ G-stable and $N_i \triangleleft N \Rightarrow$

for
$$n_i \in N_i, g \in G, n(g)\sigma(g)(n_i)n(g)^{-1} \in N_i \Rightarrow \sigma(g)(n_i) \in N_i$$
.
We obtain then morphisms

$$\begin{aligned} \varphi_1 &: G \to \operatorname{Hol}(N_1) & \varphi_2 &: G' \to \operatorname{Hol}(N_2) \\ g &\mapsto (\pi_1(n(g)), \sigma(g)_{|N_1}) & g \mapsto (\pi_2(n(g)), \sigma(g)_{|N_2}) \end{aligned}$$

Since $F = K^{N_2}$ and $G' = \operatorname{Gal}(K/F)$, we have for $g \in G$, $g \in G' \Leftrightarrow \varphi(g)(1_N) \in N_2$. Hence $\varphi_1(G') = Stab(1_{N_1})$. Now for $y \in G', \varphi_2(y)(1_{N_2}) = 1_{N_2} \Rightarrow \varphi_2(y)(1_N) \in N_1$. But we had $\varphi(y)(1_N) \in N_2$, hence $\varphi(y)(1_N) = 1_N$, which implies $y = 1_G$, so $\varphi_2(1_{G'}) = Stab(1_{N_2})$.

Counting Hopf Galois structures

1. The alternating group A_4

K/k Galois with group A_4 has only two types of Hopf Galois structures: A_4 and $V_4 \times C_3$.

 $e(A_4, A_4) = 10$ (Carnahan-Childs, 1999).

Let us determine the number of induced Hopf Galois structures of type $V_4 \times C_3$. We have a unique choice for the nontrivial normal subgroup H, the Klein subgroup $V_4 = \{id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$. It has four different complements in G

$$G'_1 = \langle (2,3,4) \rangle, \ G'_2 = \langle (1,3,4) \rangle, \ G'_3 = \langle (1,2,4) \rangle, \ G'_4 = \langle (1,2,3) \rangle.$$

For a fixed G', $F = K^{G'}/k$ is a quartic extension with Galois closure K and has a unique Hopf Galois structure of type V_4 given by $\varphi_1 : A_4 \hookrightarrow \operatorname{Hol}(V_4)$, such that $\varphi_1(G') = Stab(1_{V_4})$. The extension K/F is Galois with group G'. This is the unique Hopf Galois structure for K/F. We obtain then a unique induced Hopf Galois structure for each G', given by $\varphi : A_4 \hookrightarrow \operatorname{Hol}(V_4 \times C_3)$ such that $\varphi(G') = Stab(\{1_{V_4}\} \times C_3)$. Therefore K/k has four different induced Hopf Galois structures of type $V_4 \times C_3$. We obtain then

$$e(A_4, V_4 \times C_3) \ge 4.$$

2. Groups of order 4p

p odd prime, G nonabelian group of order 4p, K/k Galois extension with group G. G has a unique p-Sylow subgroup H and p 2-Sylow subgroups isomorphic either to C_4 or to $C_2 \times C_2$. Let G' be a 2-Sylow subgroup of G and $F = K^{G'}$.

Since F/k has degree p and G is solvable, F/k is Hopf Galois (Childs 1989). Furthermore, F/k is almost classically Galois and has a unique Hopf Galois structure given by the normal complement H of G' in G.

The number of Hopf Galois structures for Galois extensions with group isomorphic to G' is

Hence the number of induced Hopf Galois structures of type $H \times N_2$ for K/k is

	Structures $C_4 \times C_p$	Structures $C_2 \times C_2 \times C_p$
2-Sylow subgroup $\simeq C_4$	p	p
2-Sylow subgroup $\simeq C_2 \times C_2$	3p	p

These are exactly the numbers of split Hopf Galois structures for K/k of type $C_4 \times C_p$ or $C_2 \times C_2 \times C_p$ (Kohl, 2007).

3. Groups of order pq

G group of order pq, p and q primes, p > q, K/k Galois extension with group G.

- If $q \nmid p 1$, pq is a Burnside number and K/k has a unique Hopf Galois structure, the classical Galois one (Byott, 1996).
- If $q \mid p-1$, G is either cyclic or metacyclic $C_p \rtimes C_q$.
 - ▶ If $G \simeq C_{pq}$, there are 2q 1 different Hopf Galois structures for K/k, the classical one with $N \simeq C_{pq}$ (split) and 2q 2 structures with $N \simeq C_p \rtimes C_q$ (nonsplit).
 - ▶ If $G \simeq C_p \rtimes C_q$, it has a unique *p*-Sylow subgroup and *p q*-Sylow subgroups. Let G' be a *q*-Sylow subgroup of *G* and $F = K^{G'}$. Since F/k has prime degree *p* and *G* is solvable, F/k is Hopf Galois (Childs, 1989). Furthermore, in this case F/k is almost classically Galois and has a unique Hopf Galois structure. The Galois structure of K/F is also the unique Hopf Galois structure.
 - Therefore, for each G', we obtain exactly one induced Hopf Galois structure for K/k and all together we obtain in this way p induced Hopf Galois structures for K/k. This covers all split structures for K/k (Byott, 2004).

In particular, if p is an odd prime and K/k is a dihedral extension of degree 2p, its Hopf Galois structures are the two given by G and G^{opp} (dihedral type) and the psplit structures of type $C_2 \times C_p$ (cyclic type), induced by the structures of K/Fand F/k, for $F = K^{G'}$ with G' ranging over the set of complements in G of the cyclic subgroup of order p.