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Local Fields

Let K be a field which is complete with respect to a discrete
valuation vk : K* — Z, whose residue field K is a perfect field
of characteristic p. Also let

Ok ={a € K : vg(a) >0}
= ring of integers of K

mk = uniformizer for Ok (i.e., vk(mk) = 1)

PK:WK'OK

= unique maximal ideal of Ok

Let K* be a separable closure of K, and let L/K be a finite
totally ramified subextension of K*? /K. Write
[L:K]=n=up” with p{u. Definev,:Z — Z by

V,(h) = min{v,(h), v}.



Extensions and Power Series

Let T C Ok be the set of Teichmiiller representatives for K.
Let 7k, ;. be uniformizers for K, L, and let

Q(X):aOX"+a1X"+1+a2X"+2+---

be the unique power series with coefficients in T such that
TK = Q(WL)-
Suppose 7, is another uniformizer for L. Let

G(X) = 3X" + & X" 4 3, X2 ...

be the series with coefficients in T such that mx = G(7,).



Extensions and Powers Series, continued

Now assume that
FL=m 4+ rrt™ (mod PIT?)
forsome /¢ >1,re T.

Question: For which i > 0 do we know that 3; = a;?

Write m; = ¢(7,) with ¢ € T[[X]]. Then

Y(X) = X — rX (mod X“+?)
Tk = G(m) = G(¥(7L)).

Suppose char(K) = p. Then T = K, so G((X)) € T[[X]]. It
follows that G(X) = G(¢(X)).



Extensions and Powers Series (char(K) = p)

Suppose V,(h) = j. Then n+ h = wp’/ for some integer w.
Hence ¥(X)"h € K[[X"]] and
w(X)n+h = (X N rX€+1)n+h (mod Xn+h+(€+1)pf)

— Xn+h((1 . rXZ)’y')W (mod Xn+h+(€+1)pf)
— xnth _ eran+h+€pf (mod Xn+h+(€+1)pf).

It follows from the above that if i < h+ Epvp(h) forall h>0
such that a, # 0 then 3, = a;.

Furthermore, if i < h+ ¢p"»(") for all h > 0 such that a # 0
then we can express 3; as a polynomial in r with coefficients
expressed in terms of {a, : g < i}.



Indices of Inseparability (Fried, Heiermann)
Assume char(K) = p. For 0 <j < v define

i;=min{h: h>0, a, #0, vp(h) <,j}.

Then j; does not depend on the choice of 7k or m;. We say
that j; is the jth index of inseparability of L/K. We have
O=i<ip,1<...<i <.

It follows from the above that if i < i; + ¢p/ for 0 < j < V(i)
then 3; = a;.

For 0 < j < v define

0j(x) = ij + p'x
Pj(x) = min{éj/(x) 0<j <j}

Let i > 0 and set V(i) = . If i < ¢;({) then &; = a;.



What if char(K) = 07
Suppose char(K) = 0. For 0 < j < v define
i™ =min{h:h>0, a, #0, V,(h) <}
ij = min{ii" + (' = j)v(p) : j <Jj < v}

Then it may depend on the choice of 7, (but not on k),
but j; depends only on the extension L/K.

The functions ¢; and ¢; are defined as in the characteristic-p
case. Once again, if V,(/) =/ and i < ¢;({) then 3; = a;.

Theorem (Fried, Heiermann): For x > 0 we have

bu(x) =~ 6,(x).



An Example

Let K = F3((t)) and let L/K be a totally ramified extension of
degree 9. Suppose 7, is a uniformizer for L such that
t = G(m.) with

g(X):X9+X27—X42—X48+X49+"'

Then
b =49 —9 =140
h=42—-9 =233
h=9—-9=0.

The Hasse-Herbrand function for the example can be deduced
from the indices of inseparability:



¢1/k for the Example




Powers Series and Eisenstein Polynomials

Let 7, be a uniformizer for L and let
FX)=X"—aX" 4 (=1)" e X+ (-1)c,

be the minimum polynomial of 7w, over K. Then f(X) is the
Weierstrass polynomial of the series G(X) — k.

The series G(X) € T[[X]] such that G(7,) = mk can be
computed iteratively from f(X) (using Newton's method if
char(K) = p).

For every i > n, knowing G(X) modulo X' is equivalent to
knowing ¢,_p7 modulo 7} for 1 < h < n. (In fact, each of
these is equivalent to knowing the Ok-algebra O, /P;}.)



Indices of Inseparability via Eisenstein Polynomials

Let 7; be a uniformizer for L, and let

FX)=X"—a X"+ -+ (=1)" e 1 X + (—1)"c,
be the minimum polynomial for 7, over K.
For 0 <j < v we have

I'J?TL = min{vL(Ch7T,'_’_h) :0 S h < n, Vp(n - h) SJ} -n
i =min{ii* + (' = j)v(p) 1 j <Jj < v}



The Problem

Let L/K be a finite separable totally ramified subextension of
K*® /K of degree [L : K] = n. Let m; be a uniformizer for L
and let

FX)=X"— X"+ 4 (1) e X + (—1)"c,

be the minimum polynomial of 7, over K. Let £ > 1, let
r € Ok, and let 7r; be another uniformizer for L such that
FL =7+ rri™t (mod PyT2). Let

FIX)=X"—&aX" 4 (=) X+ (1),

be the minimum polynomial of 7, over K. We wish to obtain
congruences for the coefficients & of f(X) in terms of ¢, r,
and the coefficients of f(X).



Krasner's Work

Krasner (1937) showed that for 1 < h < n we have
& =c, (mod 73;”(6)),

where £, (0) = [k (€) + 27.

We prove that

&y =c, (mod P2y
for certain integers ps(¢) such that py(€) > rx(¢).

Let h be the unique integer such that 1 < h < n and n divides

np/k(€) + h. Krasner gave a formula for the congruence class

modulo Pﬁ"(z)ﬂ of &, — c¢,. We give similar formulas for up to

v + 1 values of h.



A Theorem

Let 1 < h < nand set j = V,(h). Define

o) 4]

n

pr(l) = [
Let m;, 7, be uniformizers for L and let

(X)
F(X)

-

X" —aX™ o (1) e X+ (1),
X" — X" (2D, X+ (1),

be the minimum polynomials for 7w, 7, over K.

Theorem 1: Suppose 7, = 7, (mod Pf“) for some ¢ > 1.
Then & = ¢, (mod PP for 1 < h < n.



Another Theorem

Theorem 2: For 0 < m < v write the mth index of
inseparability of L/K in the form i, = A,n — b, with
1 < b,, < n. Suppose there are £ > 1 and r € Oy with

=7+ r7rf4r1 (mod Pf“).

Let 0 < j < v be such that V,(p;(¢)) =, and let h be the
unique integer such that 1 < h < n and n divides ¢;(¢) + h.
Set k = (¢;(¢) + h)/n and hg = h/p’. Then

5 k—Am m k1
Ch = ch+ E gmCy mcp,r? (mod P,

m65j

where . ..



Theorem 2, continued

Si={m:0<m<j, () = m(0)}

(— L)k An (hop/ =™ 4 € — up*~™) if by < h
gm = (1)} HAn(hop/ =™ + () if h< bpn<n
(—1)kHHAn ypr—m if by, = n.



An Example

Let K be a finite extension of the 3-adic field Q3 such that
VK(3) > 2. Let

FX) =X — X+ + X —c

be an Eisenstein polynomial over K such that

vk(c2) = vk(cs) = 2, vk(cn) > 2 for h € {1,3}, and

vk(cn) > 3 for h € {4,5,7,8}. Let m, be a root of f(X).
Then L = K() is a totally ramified extension of K of degree
9, so we have u =1, v = 2. It follows from our assumptions
about the valuations of the coefficients of f(X) that the
indices of inseparability of L/K are iy = 16, i = 12, and

i» = 0. Therefore Ag =2, Ay =2, Ao =1,and by =2, b; = 6,
by = 9. We get the following values for @;(¢) and ¢;(¢):



Example (Theorem 1)

l @0(@ 951(5) 952(5) 900(5) 801(6) 902(5)
0| 16 12 0 16 12 0
1] 17 15 9 17 15 9
2

18 18 18 18 18 18
3| 19 21 27 19 19 19

Now let 77; be another uniformizer for L, with minimum
polynomial

F(X) =X =& X8+ + &X — .

Suppose 7, = 7, (mod P?). Then by Theorem 1 and the
table above we get

& = cn (mod Pg) for h € {1,3,9},
& = ¢, (mod P3) for h € {2,4,5,6,7,8}.



Example (Theorem 2)

Suppose 7, = 7, + rm; (mod P}), with r € Ok. By the table
above we get 73(()00(1)) = 0, 73(@1(1)) = ]., 73(@2(1)) =2
and So = {0}, S; = {1}, S» = {2}. The corresponding values
of harel, 3,9, sowe have hg = 1, k = 2 in all three cases.

By applying Theorem 2 with / =1, j = 0,1,2 we get the
following congruences:

G=a+(—1)?"2(1+1)er (mod PR)
=c —26r (mod P3)
&B=c+ (—1)*"2(1 +1)cr’ (mod Pp)
=c— 2cr° (mod P})
& = co+ (—1)*T2r® (mod P3)
=+ cyr (mod Py).



Symmetric Polynomials and Extensions

For1 < h<nlet

en(Xi . Xa) = D XXy X,

1<ti<..<ty<n
be the hth elementary symmetric polynomial in n variables.

Define Ej, : L — K by Ep(a) = ex(o1(a), ..., 0n(c)), where
01, ...,0, are the K-embeddings of L into K***. Then

er( Xy, ... Xp) = X1+ -+ X, = Ei(a) = Tryi(a)
en( X1, ..., Xn) = X1 Xo ... Xy = Eq(@) = Nyyk(a)

Suppose L = K(a) and f,(X) = X"+ 325, (=1)"b X" " is
the minimum polynomial for o over K. Then Ex(a) = by,



Monomial Symmetric Polynomials

Let gt = (1, ..., pn) be a partition of some positive integer w
into h < n parts.

View p as a multiset, and let i/ be the sum of p with the
multiset consisting of n — h copies of 0.

The monomial symmetric polynomial in n variables associated
topis
mu(Xe o Xa) =) XXX,
w
where the sum is taken over all distinct permutations
w = (wy,...,w,) of .

For a € L set M,(a)) = my(o1(@),...,04(a)) € K.



Monomial and Elementary Symmetric Polynomials

An element o € P, can be expressed in the form
o= I’17T1_—|—I’27Ti + .-+ with r; € O.

Therefore if z € E4(PL) then z is a sum of terms of the form

g by - - Py Mu(7L), where g = (pa, ..., fp) is a partition
with h parts.

m, (X1, ..., X,) can be expressed as a polynomial in
€1,62,...,6EL

m, = E d)\ﬂ NS P - VEPIPIPI =) Wit
A

where dy,, € Z and the sum is taken over all partitions
A= (A1, A) of wi= g+ 4 pp such that \; < n.

Hence M,,( g Aap € Cr - - - Oy



Two Lemmas

For a partition A = {1, ..., A} whose parts are < n define
X = G\ Oy - - - G-

Lemma 1: Let w > 1 and let A = {\1,..., \¢} be a partition
of w whose parts satisfy 1 < \; < n. Choose g to minimize
V,(Ag) and set t = V,(A,). Then vi(ca) > it + w.

Let w > 1 and let A be partition of w. For k > 1 let k * A be
the partition of kw which is the multiset sum of k copies of A,
and let k - X be the partition of kw obtained by multiplying
the parts of A by k.

Lemma 2: Let t > >0, let w’ > 1, and set w = w'p’. Let
X be a partition of w’ and set A = pt- X’. Let u be a
partition of w such that there does not exist a partition p’
with g = p/™ % p/. Then p*™ divides dy,,.



Proving Theorem 1

Assume 7, = m; + rwf“ with r € Ok. Let 1 < h < n and set
J=Vp(h). For 0 < s < hlet p, be the partition of s+ h
consisting of h — s copies of 1 and s copies of £+ 1. Then

h
Ch Eh :ZMHSWLI’—C;,—}-ZM 7TL
s=0

To prove that &, = ¢, (mod Pﬁh(g)) it's enough to show that
VK(MMS(WL)) Z ph(f) for 1 S S S h.

For this it suffices to show that v, (dx, cx) > ¢;(¢) + h for all
1 < s < h and all partitions X of /s + h whose parts are < n.



Proving Theorem 1, continued

Let 1 <s < h, set j = V,(h), and set m = min{j, V,(s)}.
Then m < jand s > p™. Let A ={\1,..., \c} be a partition
of s+ hsuchthat 1 < \; < nforl<i<k. Choose g to
minimize V,(\q) and set t = V,(\;). By Lemma 1 we get
VL(C)\) > IZFL + /s + h.

Suppose m < t. Then m < v, so we have p™** { gcd(h—s, s).
It follows from Lemma 2 that v,(dx,,) >t — m. Thus

vi(dap,x) = vi(dan,) + vi(ca)
> (t — m)vi(p) +ift+ s+ h
> im+{p™ + h.



Proving Theorem 1, conclusion

Suppose m > t. Then

vi(ea)

it +tls+h
ir +p" + h
Im +p™ + h.

VL(d)\p,s cx)

vV IV IV IV

In both cases we get
VL(dAuSCA) > Gm(l) +h> 90](6) + h,

and hence &, = ¢, (mod P2,



