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Local Fields
Let K be a field which is complete with respect to a discrete
valuation vK : K× → Z, whose residue field K is a perfect field
of characteristic p. Also let

OK = {α ∈ K : vK (α) ≥ 0}
= ring of integers of K

πK = uniformizer for OK (i. e., vK (πK ) = 1)

PK = πK · OK

= unique maximal ideal of OK

Let K sep be a separable closure of K , and let L/K be a finite
totally ramified subextension of K sep/K . Write
[L : K ] = n = upν with p - u. Define vp : Z→ Z by
vp(h) = min{vp(h), ν}.



Extensions and Power Series

Let T ⊂ OK be the set of Teichmüller representatives for K .
Let πK , πL be uniformizers for K , L, and let

G(X ) = a0X
n + a1X

n+1 + a2X
n+2 + · · ·

be the unique power series with coefficients in T such that
πK = G(πL).

Suppose π̃L is another uniformizer for L. Let

G̃(X ) = ã0X
n + ã1X

n+1 + ã2X
n+2 + · · ·

be the series with coefficients in T such that πK = G̃(π̃L).



Extensions and Powers Series, continued

Now assume that

π̃L ≡ πL + rπ`+1
L (mod P`+2

L )

for some ` ≥ 1, r ∈ T .

Question: For which i ≥ 0 do we know that ãi = ai?

Write πL = ψ(π̃L) with ψ ∈ T [[X ]]. Then

ψ(X ) ≡ X − rX `+1 (mod X `+2)

πK = G(πL) = G(ψ(π̃L)).

Suppose char(K ) = p. Then T = K , so G(ψ(X )) ∈ T [[X ]]. It
follows that G̃(X ) = G(ψ(X )).



Extensions and Powers Series (char(K ) = p)

Suppose vp(h) = j . Then n + h = wpj for some integer w .

Hence ψ(X )n+h ∈ K [[X pj ]] and

ψ(X )n+h ≡ (X − rX `+1)n+h (mod X n+h+(`+1)pj )

≡ X n+h((1− rX `)p
j

)w (mod X n+h+(`+1)pj )

≡ X n+h − wrp
j

X n+h+`pj (mod X n+h+(`+1)pj ).

It follows from the above that if i < h + `pvp(h) for all h ≥ 0
such that ah 6= 0 then ãi = ai .

Furthermore, if i ≤ h + `pvp(h) for all h ≥ 0 such that ah 6= 0
then we can express ãi as a polynomial in r with coefficients
expressed in terms of {ag : g ≤ i}.



Indices of Inseparability (Fried, Heiermann)
Assume char(K ) = p. For 0 ≤ j ≤ ν define

ij = min{h : h ≥ 0, ah 6= 0, vp(h) ≤ j}.

Then ij does not depend on the choice of πK or πL. We say
that ij is the jth index of inseparability of L/K . We have
0 = iν < iν−1 ≤ . . . ≤ i1 ≤ i0.

It follows from the above that if i < ij + `pj for 0 ≤ j ≤ vp(i)
then ãi = ai .

For 0 ≤ j ≤ ν define

φ̃j(x) = ij + pjx

φj(x) = min{φ̃j ′(x) : 0 ≤ j ′ ≤ j}.

Let i ≥ 0 and set vp(i) = j . If i < φj(`) then ãi = ai .



What if char(K ) = 0?

Suppose char(K ) = 0. For 0 ≤ j ≤ ν define

iπLj = min{h : h ≥ 0, ah 6= 0, vp(h) ≤ j}
ij = min{iπLj ′ + (j ′ − j)vL(p) : j ≤ j ′ ≤ ν}.

Then iπLj may depend on the choice of πL (but not on πK ),
but ij depends only on the extension L/K .

The functions φ̃j and φj are defined as in the characteristic-p
case. Once again, if vp(i) = j and i < φj(`) then ãi = ai .

Theorem (Fried, Heiermann): For x ≥ 0 we have

φL/K (x) =
1

n
· φν(x).



An Example

Let K = F3((t)) and let L/K be a totally ramified extension of
degree 9. Suppose πL is a uniformizer for L such that
t = G(πL) with

G(X ) = X 9 + X 27 − X 42 − X 48 + X 49 + · · · .

Then

i0 = 49− 9 = 40

i1 = 42− 9 = 33

i2 = 9− 9 = 0.

The Hasse-Herbrand function for the example can be deduced
from the indices of inseparability:



φL/K for the Example
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Powers Series and Eisenstein Polynomials

Let πL be a uniformizer for L and let

f (X ) = X n − c1X
n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn

be the minimum polynomial of πL over K . Then f (X ) is the
Weierstrass polynomial of the series G(X )− πK .

The series G(X ) ∈ T [[X ]] such that G(πL) = πK can be
computed iteratively from f (X ) (using Newton’s method if
char(K ) = p).

For every i ≥ n, knowing G(X ) modulo X i is equivalent to
knowing cn−hπ

h
L modulo πi

L for 1 ≤ h ≤ n. (In fact, each of
these is equivalent to knowing the OK -algebra OL/P i

L.)



Indices of Inseparability via Eisenstein Polynomials

Let πL be a uniformizer for L, and let

f (X ) = X n − c1X
n1 + · · ·+ (−1)n−1cn−1X + (−1)ncn

be the minimum polynomial for πL over K .

For 0 ≤ j ≤ ν we have

iπLj = min{vL(chπ
n−h
L ) : 0 ≤ h < n, vp(n − h) ≤ j} − n

ij = min{iπLj ′ + (j ′ − j)vL(p) : j ≤ j ′ ≤ ν}.



The Problem

Let L/K be a finite separable totally ramified subextension of
K sep/K of degree [L : K ] = n. Let πL be a uniformizer for L
and let

f (X ) = X n − c1X
n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn

be the minimum polynomial of πL over K . Let ` ≥ 1, let
r ∈ OK , and let π̃L be another uniformizer for L such that
π̃L ≡ πL + rπ`+1

L (mod P`+2
L ). Let

f̃ (X ) = X n − c̃1X
n−1 + · · ·+ (−1)n−1c̃n−1X + (−1)nc̃n

be the minimum polynomial of π̃L over K . We wish to obtain
congruences for the coefficients c̃i of f̃ (X ) in terms of `, r ,
and the coefficients of f (X ).



Krasner’s Work

Krasner (1937) showed that for 1 ≤ h ≤ n we have

c̃h ≡ ch (mod Pκh(`)K ),

where κh(`) = dϕL/K (`) + h
n
e.

We prove that
c̃h ≡ ch (mod Pρh(`)K )

for certain integers ρh(`) such that ρh(`) ≥ κh(`).

Let h be the unique integer such that 1 ≤ h ≤ n and n divides
nϕL/K (`) + h. Krasner gave a formula for the congruence class

modulo Pκh(`)+1
K of c̃h − ch. We give similar formulas for up to

ν + 1 values of h.



A Theorem

Let 1 ≤ h ≤ n and set j = vp(h). Define

ρh(`) =

⌈
ϕj(`) + h

n

⌉
.

Let πL, π̃L be uniformizers for L and let

f (X ) = X n − c1X
n−1 + · · ·+ (−1)n−1cn−1X + (−1)ncn

f̃ (X ) = X n − c̃1X
n−1 + · · ·+ (−1)n−1c̃n−1X + (−1)nc̃n

be the minimum polynomials for πL, π̃L over K .

Theorem 1: Suppose π̃L ≡ πL (mod P`+1
L ) for some ` ≥ 1.

Then c̃h ≡ ch (mod Pρh(`)K ) for 1 ≤ h ≤ n.



Another Theorem

Theorem 2: For 0 ≤ m ≤ ν write the mth index of
inseparability of L/K in the form im = Amn − bm with
1 ≤ bm ≤ n. Suppose there are ` ≥ 1 and r ∈ OK with

π̃L ≡ πL + rπ`+1
L (mod P`+2

L ).

Let 0 ≤ j ≤ ν be such that vp(ϕj(`)) = j , and let h be the
unique integer such that 1 ≤ h ≤ n and n divides ϕj(`) + h.
Set k = (ϕj(`) + h)/n and h0 = h/pj . Then

c̃h ≡ ch +
∑
m∈Sj

gmc
k−Am
n cbmr

pm (mod Pk+1
K ),

where . . .



Theorem 2, continued

Sj = {m : 0 ≤ m ≤ j , ϕj(`) = ϕ̃m(`)}

gm =


(−1)k+`+Am(h0p

j−m + `− upν−m) if bm < h

(−1)k+`+Am(h0p
j−m + `) if h ≤ bm < n

(−1)k+`+Amupν−m if bm = n.



An Example

Let K be a finite extension of the 3-adic field Q3 such that
vK (3) ≥ 2. Let

f (X ) = X 9 − c1X
8 + · · ·+ c8X − c9

be an Eisenstein polynomial over K such that
vK (c2) = vK (c6) = 2, vK (ch) ≥ 2 for h ∈ {1, 3}, and
vK (ch) ≥ 3 for h ∈ {4, 5, 7, 8}. Let πL be a root of f (X ).
Then L = K (πL) is a totally ramified extension of K of degree
9, so we have u = 1, ν = 2. It follows from our assumptions
about the valuations of the coefficients of f (X ) that the
indices of inseparability of L/K are i0 = 16, i1 = 12, and
i2 = 0. Therefore A0 = 2, A1 = 2, A2 = 1, and b0 = 2, b1 = 6,
b2 = 9. We get the following values for ϕ̃j(`) and ϕj(`):



Example (Theorem 1)

` ϕ̃0(`) ϕ̃1(`) ϕ̃2(`) ϕ0(`) ϕ1(`) ϕ2(`)
0 16 12 0 16 12 0
1 17 15 9 17 15 9
2 18 18 18 18 18 18
3 19 21 27 19 19 19

Now let π̃L be another uniformizer for L, with minimum
polynomial

f̃ (X ) = X 9 − c̃1X
8 + · · ·+ c̃8X − c̃9.

Suppose π̃L ≡ πL (mod P2
L). Then by Theorem 1 and the

table above we get

c̃h ≡ ch (mod P2
K ) for h ∈ {1, 3, 9},

c̃h ≡ ch (mod P3
K ) for h ∈ {2, 4, 5, 6, 7, 8}.



Example (Theorem 2)
Suppose π̃L ≡ πL + rπ2

L (mod P3
L), with r ∈ OK . By the table

above we get v 3(ϕ0(1)) = 0, v 3(ϕ1(1)) = 1, v 3(ϕ2(1)) = 2
and S0 = {0}, S1 = {1}, S2 = {2}. The corresponding values
of h are 1, 3, 9, so we have h0 = 1, k = 2 in all three cases.

By applying Theorem 2 with ` = 1, j = 0, 1, 2 we get the
following congruences:

c̃1 ≡ c1 + (−1)2+1+2(1 + 1)c2r (mod P3
K )

≡ c1 − 2c2r (mod P3
K )

c̃3 ≡ c3 + (−1)2+1+2(1 + 1)c6r
3 (mod P3

K )

≡ c3 − 2c6r
3 (mod P3

K )

c̃9 ≡ c9 + (−1)2+1+1c29 r
9 (mod P3

K )

≡ c9 + c29 r
9 (mod P3

K ).



Symmetric Polynomials and Extensions

For 1 ≤ h ≤ n let

eh(X1, . . . ,Xn) =
∑

1≤t1<...<th≤n

Xt1Xt2 . . .Xth

be the hth elementary symmetric polynomial in n variables.

Define Eh : L→ K by Eh(α) = eh(σ1(α), . . . , σn(α)), where
σ1, . . . , σn are the K -embeddings of L into K sep. Then

e1(X1, . . . ,Xn) = X1 + · · ·+ Xn ⇒ E1(α) = TrL/K (α)

en(X1, . . . ,Xn) = X1X2 . . .Xn ⇒ En(α) = NL/K (α)

Suppose L = K (α) and fα(X ) = X n +
∑n

h=1(−1)hbhX
n−h is

the minimum polynomial for α over K . Then Eh(α) = bh.



Monomial Symmetric Polynomials

Let µ = (µ1, . . . , µh) be a partition of some positive integer w
into h ≤ n parts.

View µ as a multiset, and let µ′ be the sum of µ with the
multiset consisting of n − h copies of 0.

The monomial symmetric polynomial in n variables associated
to µ is

mµ(X1, . . . ,Xn) =
∑
ω

X ω1
1 X ω2

2 . . .X ωn
n ,

where the sum is taken over all distinct permutations
ω = (ω1, . . . , ωn) of µ′.

For α ∈ L set Mµ(α) = mµ(σ1(α), . . . , σn(α)) ∈ K .



Monomial and Elementary Symmetric Polynomials
An element α ∈ PL can be expressed in the form
α = r1πL + r2π

2
L + · · · with ri ∈ OK .

Therefore if z ∈ Eh(PL) then z is a sum of terms of the form
rµ1rµ2 . . . rµhMµ(πL), where µ = (µ1, . . . , µh) is a partition
with h parts.

mµ(X1, . . . ,Xn) can be expressed as a polynomial in
e1, e2, . . . , en:

mµ =
∑
λ

dλµ · eλ1eλ2 . . . eλk ,

where dλµ ∈ Z and the sum is taken over all partitions
λ = (λ1, . . . , λk) of w := µ1 + · · ·+ µh such that λi ≤ n.

Hence Mµ(πL) =
∑
λ

dλµ · cλ1cλ2 . . . cλk .



Two Lemmas

For a partition λ = {λ1, . . . , λk} whose parts are ≤ n define
cλ = cλ1cλ2 . . . cλk .

Lemma 1: Let w ≥ 1 and let λ = {λ1, . . . , λk} be a partition
of w whose parts satisfy 1 ≤ λi ≤ n. Choose q to minimize
vp(λq) and set t = vp(λq). Then vL(cλ) ≥ iπLt + w .

Let w ≥ 1 and let λ be partition of w . For k ≥ 1 let k ∗ λ be
the partition of kw which is the multiset sum of k copies of λ,
and let k · λ be the partition of kw obtained by multiplying
the parts of λ by k .

Lemma 2: Let t ≥ j ≥ 0, let w ′ ≥ 1, and set w = w ′pt . Let
λ′ be a partition of w ′ and set λ = pt · λ′. Let µ be a
partition of w such that there does not exist a partition µ′

with µ = pj+1 ∗ µ′. Then pt−j divides dλµ.



Proving Theorem 1

Assume π̃L = πL + rπ`+1
L , with r ∈ OK . Let 1 ≤ h ≤ n and set

j = vp(h). For 0 ≤ s ≤ h let µs be the partition of `s + h
consisting of h − s copies of 1 and s copies of ` + 1. Then

c̃h = Eh(π̃L) =
h∑

s=0

Mµs
(πL)r s = ch +

h∑
s=1

Mµs
(πL)r s .

To prove that c̃h ≡ ch (mod Pρh(`)K ) it’s enough to show that
vK (Mµs

(πL)) ≥ ρh(`) for 1 ≤ s ≤ h.

For this it suffices to show that vL(dλµs
cλ) ≥ ϕj(`) + h for all

1 ≤ s ≤ h and all partitions λ of `s + h whose parts are ≤ n.



Proving Theorem 1, continued

Let 1 ≤ s ≤ h, set j = vp(h), and set m = min{j , vp(s)}.
Then m ≤ j and s ≥ pm. Let λ = {λ1, . . . , λk} be a partition
of `s + h such that 1 ≤ λi ≤ n for 1 ≤ i ≤ k . Choose q to
minimize vp(λq) and set t = vp(λq). By Lemma 1 we get
vL(cλ) ≥ iπLt + `s + h.

Suppose m < t. Then m < ν, so we have pm+1 - gcd(h− s, s).
It follows from Lemma 2 that vp(dλµs

) ≥ t −m. Thus

vL(dλµs
cλ) = vL(dλµs

) + vL(cλ)

≥ (t −m)vL(p) + iπLt + `s + h

≥ im + `pm + h.



Proving Theorem 1, conclusion

Suppose m ≥ t. Then

vL(dλµs
cλ) ≥ vL(cλ)

≥ iπLt + `s + h

≥ it + `pm + h

≥ im + `pm + h.

In both cases we get

vL(dλµs
cλ) ≥ ϕ̃m(`) + h ≥ ϕj(`) + h,

and hence c̃h ≡ ch (mod Pρh(`)K ).


