A First Sylow Theorem for skew braces?

Andrea Caranti (Trento) Ilaria Del Corso (Pisa) Massimiliano Di Matteo (Napoli) Maria Ferrara (Pegaso) Marco Trombetti (Napoli)

Storrs, 5 June 2025

Theorem

Let G be a finite group.

Let r be a prime dividing the order of G.

Let r^n be the largest power of r dividing the order of G.

Then G contains a subgroup of order r^n .

A First Sylow Theorem for skew braces?

Theorem? (Unlikely)

Let B be a finite skew brace.

Let r be a prime dividing the order of B.

Let r^n be the largest power of r dividing the order of B.

Then B contains a sub-skew brace of order r^n .

Here a sub-skew brace of $B = (B, \cdot, \circ)$ is a subset $A \subseteq B$ which satisfies any two (and then all three) of

- 1. $A \leq (B, \cdot)$,
- 2. $A \leq (B, \circ)$,
- 3. A is invariant under $\gamma(A)$.

Thus, a Sylow *r*-sub-skew brace of B is a subset that is simultaneously a Sylow *r*-subgroup of the additive group and a Sylow *r*-subgroup of the multiplicative group.

To a (right) skew brace (B,\cdot,\circ) one attaches a group morphism

$$\gamma: (B, \circ) \to \operatorname{Aut}(B, \cdot)$$

(more commonly called λ in the literature) such that

$$x \circ y = x^{\gamma(y)} \cdot y.$$

We have a proof for finite, supersolvable skew braces.

We are tackling the finite, solvable case.

The proof actually shows that in a finite supersolvable skew brace there are Hall π -sub-skew braces for every set π of primes.

Here a sub-skew brace A of the finite skew brace B is said to be a Hall π -sub-skew brace if

|A| is a π -number

and

gcd(|A|, |B|/|A|) = 1.

Supersolvable groups and skew braces

A finite group is said to be supersolvable if all of its non-trivial quotient groups have a normal subgroup of some prime order.

So for instance S_3 is supersolvable, while S_4 is only supersolvable.

A finite skew brace is said to be supersolvable if all of its non-trivial quotient skew braces have an ideal of some prime order.

 A. Ballester-Bolinches, R. Esteban-Romero, M. Ferrara, V. Pérez-Calabuig, M. Trombetti
 Finite skew braces of square-free order and supersolubility

Forum Math. Sigma 12 (2024), Paper No. e39, 33 pp.

Ideals in skew braces correspond to normal subgroups in groups — they are the objects with respect to which one can take quotients.

Statement and beginning of proof

Theorem

Let B be a finite skew brace.

If B is supersolvable, then B satisfies Sylow's First Theorem.

Let B be a counterexample of minimum order.

Let *M* be an ideal of *B* of order a prime *p*, and consider the quotient skew brace B/M.

In B/M there is a Sylow *p*-sub-skew brace P/M. Then *P* will be a Sylow *p*-sub-skew brace of *B*.

Let $q \neq p$ be a prime dividing the order of *B*.

In B/M there is a Sylow q-sub-skew brace A/M.

If A a proper sub-skew brace of B, then A has a Sylow q-sub-skew brace, which is also a Sylow q-sub-skew brace of B. Thus A = B. 6/17

Reduction

Thus A = B, and we have reduced to the case when

- 1. *B* has order $p \cdot q^n$, for $p \neq q$ primes, and
- 2. B has an ideal M of order p.

Let Q be a Sylow *p*-subgroup of (B, \cdot) , so that

 $(B,\cdot)=Q\ltimes M.$

Trivial case: if $(B, \cdot) = Q \times M$, then Q is characteristic in (B, \cdot) , hence invariant under the whole of $\gamma(B)$, and thus Q is the Sylow q-sub-skew brace we are looking for. So from now on assume

 $[Q,M] \neq 1.$

Since the values of γ are automorphisms of (B, \cdot) , we are interested in the automorphism group of (B, \cdot) .

M. J. Curran

Automorphisms of semidirect products

Math. Proc. R. Ir. Acad. 108, n. 2 (2008), 205-210

Let $G = Q \ltimes M$ be a semidirect product, with M abelian and characteristic in G.

An automorphism ϑ of G can be described as

$$(xy)^{\vartheta} = x^{\delta} x^{\beta} y^{\alpha}, \quad \text{for } x \in Q \text{ and } y \in M$$

where

1. $\delta \in \operatorname{Aut}(Q), \ \alpha \in \operatorname{Aut}(M),$ 2. $(y^{x})^{\alpha} = (y^{\alpha})^{x^{\delta}}, \text{ for } x \in Q \text{ and } y \in M,$ 3. $\beta : Q \to M \text{ is a 1-cocycle, that is}$ $(x_{1} \cdot x_{2})^{\beta} = (x_{1}^{\beta})^{x_{2}^{\delta}} \cdot x_{2}^{\beta}, \text{ for } x_{1}, x_{2} \in Q.$

The values of γ on M

For $m \in M$, the automorphism $\gamma(m)$ of $(B, \cdot) = Q \ltimes M$ can be described as

$$(xy)^{\gamma(m)} = x^{\delta} x^{\beta} y^{\alpha},$$
 for $x \in Q$ and $y \in M$,
where $\delta \in \operatorname{Aut}(Q)$, $\alpha \in \operatorname{Aut}(M)$, $\beta : Q \to M$ a 1-cocycle.
Since M is an ideal of B , we have $[\gamma(M), B] \subseteq M$, that is, $\delta = 1$
Notation: for $m \in M$ and $b \in B$ we write $m^{\circ b} = b^{\ominus 1} \circ m \circ b$.
Indeed for $m \in M$ and $b \in B$ we have

$$M \ni \mathbf{b}^{\ominus 1} \circ \mathbf{m} \circ \mathbf{b} = \mathbf{b}^{-\gamma(b)^{-1}\gamma(m)\gamma(b)} \cdot \mathbf{m}^{\gamma(b)} \cdot \mathbf{b}$$
$$= \mathbf{b}^{-\gamma(m^{\circ(b)})} \cdot \mathbf{b} \cdot \mathbf{b}^{-1} \cdot \mathbf{m}^{\gamma(b)} \cdot \mathbf{b}$$
$$= [\gamma(m^{\circ b}), \mathbf{b}] \cdot \mathbf{b}^{-1} \cdot \mathbf{m}^{\gamma(b)} \cdot \mathbf{b},$$

where $b^{-1} \cdot m^{\gamma(b)} \cdot b \in M$, as M is an ideal, hence M is $\gamma(B)$ -invariant, and normal in both groups.

The values of γ on M

The automorphism $\gamma(m)$ of $(B, \cdot) = Q \ltimes M$, for $m \in M$ can be described as

$$(xy)^{\gamma(m)} = x^{\delta} x^{\beta} y^{\alpha}, \quad \text{for } x \in Q \text{ and } y \in M,$$

where $\delta \in \operatorname{Aut}(Q)$, $\alpha \in \operatorname{Aut}(M)$, $\beta : Q \to M$ a 1-cocycle.

We have just seen that $\delta = 1$.

But we also have $\alpha = 1$, as $\langle \gamma(M) \rangle$ is a finite *p*-group acting on the group (M, \cdot) of order *p*.

What about $\beta : \mathbf{Q} \to \mathbf{M}$, a 1-cocycle $(x_1x_2)^{\beta} = (x_1^{\beta})^{x_2} x_2^{\beta}$?

Since gcd(|Q|, |M|) = 1, we have $H^1(Q, M) = \{0\}$, that is, all 1-cocycles *b* are inner, of the form

$$x\mapsto [x,m_0]=m_0^{-x}\cdot m_0,$$

for a suitable $m_0 \in M$.

Elementary

We have seen that all 1-cocycles $\beta : Q \to M$ are inner as $H^1(Q, M) = 0$. In this particular case, there is an elementary proof. For $c_1, c_2 \in C_Q(M)$, the centraliser of M in Q within (B, \cdot) , we have $(c_1c_2)^\beta = (c_1^\beta)^{c_2} \cdot c_2^\beta = c_1^\beta \cdot c_2^\beta$,

so $\beta_{\restriction C_Q(M)} : C_Q(M) \to M$ is a group morphism, and thus it is trivial, as gcd(|Q|, |M|) = 1.

The group $Q/C_Q(M)$ is isomorphic to a subgroup of Aut (M, \cdot) . As M has prime order, this group is cyclic, say $Q = \langle t \rangle C_Q(M)$.

Thus β is determined by its value on *t*. Now there are only |M| such possible values, which are already covered by the (distinct!) inner 1-cocycles

$$x\mapsto [x,m_0]=m_0^{-x}\cdot m_0,\quad \text{for }m_0\in M.$$

Summing it up

We have found that there is a function τ on M such that for $x \in Q$ and $y, m \in M$ we have

$$(x \cdot y)^{\gamma(m)} = x \cdot [x, m^{\tau}] \cdot y = (x \cdot y)^{m^{\tau}},$$

that is, $\gamma(m) = \iota(m^{\tau})$, where

$$\iota : (B, \cdot) \to \operatorname{Aut}(B, \cdot)$$

 $b \mapsto (z \mapsto b^{-1} \cdot z \cdot b)$

It is immediate to see that $\tau \in End(M)$, as

$$\iota((m_1 \cdot m_2)^{\tau}) = \gamma(m_1 \cdot m_2) = \gamma(m_1^{\gamma(m_2)^{-1}})\gamma(m_2)$$
$$= \gamma(m_1)\gamma(m_2) = \iota(m_1^{\tau})\iota(m_2^{\tau}) = \iota(m_1^{\tau} \cdot m_2^{\tau}),$$

and [Q,M]
eq 1, so that $\iota_{\restriction M} : M \to \operatorname{Aut}(B, \cdot)$ is injective.

Note that in our case $\operatorname{End}(M) \cong \mathbb{Z}/p\mathbb{Z}$, but in the following we are keeping things slightly more general for a while. 12/17

A computation

It is convenient to write $\tau = -\sigma$, that is,

 $\gamma(m) = \iota(m^{-\sigma}).$

We reprise a calculation from

Elena Campedel, A.C. and Ilaria Del Corso, I.
 Hopf-Galois structures on extensions of degree p²q and skew braces of order p²q: the cyclic Sylow p-subgroup case

J. Algebra 556, (2020), 1165–1210

Since $\gamma: (B, \circ) \to \operatorname{Aut}(B, \cdot)$ is a morphism, and $\gamma(m) = \iota(m^{-\sigma})$, we have first of all

$$\gamma(m^{\circ t}) = \gamma(m)^{\gamma(t)} = \iota(m^{-\sigma})^{\gamma(t)} = \iota(m^{-\sigma\gamma(t)}).$$

A computation II

Recall

$$t^{\ominus 1} = t^{-\gamma(t)^{-1}}$$
 and $\gamma(m) = \iota(m^{-\sigma}).$

Let us compute then:

$$m^{\circ t} = t^{\ominus 1} \circ m \circ t$$

$$= t^{-\gamma(t)^{-1}\gamma(m)\gamma(t)} \cdot m^{\gamma(t)} \cdot t$$

$$= t^{-\gamma(t)^{-1}\iota(m^{-\sigma})\gamma(t)} \cdot t \cdot t^{-1} \cdot m^{\gamma(t)} \cdot t$$

$$= t^{-m^{-\sigma\gamma(t)}} \cdot t \cdot m^{\gamma(t)\iota(t)}$$

$$= m^{\sigma\gamma(t)} \cdot t^{-1}m^{-\sigma\gamma(t)} \cdot t \cdot m^{\gamma(t)\iota(t)}$$

$$= m^{\sigma\gamma(t)} \cdot m^{-\sigma\gamma(t)\iota(t)} \cdot m^{\gamma(t)\iota(t)}$$

$$= m^{\sigma\gamma(t)-\sigma\gamma(t)\iota(t)+\gamma(t)\iota(t)}.$$

A computation III

Putting the two calculations together, we obtain:

$$\iota(m^{-\sigma\gamma(t)}) = \gamma(m^{\circ t}) = \gamma(m^{\sigma\gamma(t)-\sigma\gamma(t)\iota(t)+\gamma(t)\iota(t)})$$
$$= \iota(m^{(\sigma\gamma(t)-\sigma\gamma(t)\iota(t)+\gamma(t)\iota(t))(-\sigma)}),$$

so that, writing $\overline{\gamma(t)} = \gamma(t)_{\uparrow M}$ and $\overline{\iota(t)} = \iota(t)_{\uparrow M}$, $\sigma \overline{\gamma(t)} = \sigma \overline{\gamma(t)} \sigma - \sigma \overline{\gamma(t)} \overline{\iota(t)} \sigma + \overline{\gamma(t)} \overline{\iota(t)} \sigma$,

or

$$\sigma\overline{\gamma(t)}(\sigma-1)=(\sigma-1)\overline{\gamma(t)}\,\overline{\iota(t)}\sigma$$

When *M* is cyclic of order *p*, so that $\sigma, \overline{\gamma(t)}, \overline{\iota(t)}$ are all in End(*M*) $\cong \mathbb{Z}/p\mathbb{Z}$, we get

 $\sigma(\sigma-1)\overline{\gamma(t)}(\overline{\iota(t)}-1)=0.$

Now $\gamma(t) \in \operatorname{Aut}(B, \cdot)$. Also $[Q, M] \neq 1$ and $Q = \langle t \rangle C_Q(M)$, so that t does not act trivially on M, i.e $\overline{\iota(t)} \neq 1$.

Thus either $\sigma = 0$ or $\sigma = 1$.

15/17

Duality

The cases $\sigma = 0$ and $\sigma = 1$ are dual to each other.

If $\sigma = 0$, this means $M \leq \ker(\gamma)$, as $\gamma(m) = \iota(m^{-\sigma})$.

Alan Koch and Paul Truman
 Opposite skew left braces and applications
 J. Algebra 546, (2020), 218–235

If $\sigma = 1$, courtesy of Alan Koch and Paul Truman we have for the gamma function $\tilde{\gamma}$ of the opposite skew brace of B

$$\widetilde{\gamma}(m) = \gamma(m^{-1})\iota(m^{-1}) = \iota(m^{-(-\sigma)})\iota(m^{-1}) = \iota(m)\iota(m^{-1}) = 1,$$

so that $M \leq \ker(\tilde{\gamma})$.

Since the sub-skew braces of a skew brace and of its opposite are the same, it is enough to consider the case $\sigma = 0$.

Conclusion

So we have

$$(B,\cdot)=Q\ltimes M,$$

with *M* of order *p*, and *Q* a *q*-group, for $q \neq p$.

Since $\gamma : (B, \circ) \to \operatorname{Aut}(B, \cdot)$ is a group morphism, and $M \leq \ker(\gamma)$, we have that $\gamma(B)$ is a *q*-group.

 $\gamma(B)$ acts by automorphisms on the set of Sylow *q*-subgroups of (B, \cdot) , which has size $\equiv 1 \pmod{q}$, by Sylow's Third Theorem.

Hence there is a Sylow *q*-subgroup *R* of (B, \cdot) which is invariant under $\gamma(B)$, and thus under $\gamma(R) \subseteq \gamma(B)$.

Therefore *R* is the Sylow *q*-sub-skew brace we were looking for.

That's All, Thanks!