The ring of integers of degree *p* extensions of *p*-adic fields

Daniel Gil Muñoz

Charles University & Università di Pisa

Hopf Algebras & Galois Module Theory June 2025

University of Connecticut (online)

Table of contents

- Problem and main result
- 3 Schema of proof

Let *p* be an odd prime number.

Let *p* be an odd prime number. By *p*-adic field we mean any finite extension of \mathbb{Q}_p . Let *p* be an odd prime number.

By *p*-adic field we mean any finite extension of \mathbb{Q}_p .

Notation

Let F be a p-adic field.

- \mathcal{O}_F is the ring of integers of F.
- v_F is the valuation of F.
- π_F is a uniformizer of F.
- \mathfrak{p}_F is the prime ideal of \mathcal{O}_F .
- \overline{F} is the residue field of F.

•
$$\pi_{\mathcal{K}}\mathcal{O}_L = \mathfrak{p}_L^{e(L/\mathcal{K})}, e(L/\mathcal{K})$$
 is the ramification index.

•
$$\pi_{\mathcal{K}}\mathcal{O}_{L} = \mathfrak{p}_{L}^{e(L/\mathcal{K})}$$
, $e(L/\mathcal{K})$ is the ramification index.

Fact: e(L/K) | [L : K].

•
$$\pi_{\mathcal{K}}\mathcal{O}_{L} = \mathfrak{p}_{L}^{e(L/\mathcal{K})}, e(L/\mathcal{K})$$
 is the ramification index.

Fact: e(L/K) | [L : K].

 L/K is ramified (resp. totally ramified) if e(L/K) > 1 (resp. e(L/K) = [L : K]).

•
$$\pi_{\mathcal{K}}\mathcal{O}_{L} = \mathfrak{p}_{L}^{e(L/\mathcal{K})}, e(L/\mathcal{K})$$
 is the ramification index.

Fact: e(L/K) | [L : K].

 L/K is ramified (resp. totally ramified) if e(L/K) > 1 (resp. e(L/K) = [L : K]).

Assume that L/K is Galois with group G.

•
$$\pi_{\mathcal{K}}\mathcal{O}_{L} = \mathfrak{p}_{L}^{e(L/\mathcal{K})}, e(L/\mathcal{K})$$
 is the ramification index.

Fact: e(L/K) | [L : K].

 L/K is ramified (resp. totally ramified) if e(L/K) > 1 (resp. e(L/K) = [L : K]).

Assume that L/K is Galois with group G.

•
$$G_i := \{ \sigma \in G \mid v_L(\sigma(\alpha) - \alpha) \ge i + 1 \text{ for all } \alpha \in \mathcal{O}_L \}, i \ge 0.$$

G_i i-th ramification group.

•
$$\pi_{\mathcal{K}}\mathcal{O}_{L} = \mathfrak{p}_{L}^{e(L/\mathcal{K})}, e(L/\mathcal{K})$$
 is the ramification index.

Fact: e(L/K) | [L : K].

 L/K is ramified (resp. totally ramified) if e(L/K) > 1 (resp. e(L/K) = [L : K]).

Assume that L/K is Galois with group G.

•
$$G_i := \{ \sigma \in G \mid v_L(\sigma(\alpha) - \alpha) \ge i + 1 \text{ for all } \alpha \in \mathcal{O}_L \}, i \ge 0.$$

G_i i-th ramification group.

• Chain of ramification groups for L/K: $G_{-1} := G \supseteq G_0 \supseteq G_1 \supseteq \cdots \supseteq \{1\}.$

•
$$\pi_{\mathcal{K}}\mathcal{O}_{L} = \mathfrak{p}_{L}^{e(L/\mathcal{K})}$$
, $e(L/\mathcal{K})$ is the ramification index.

Fact: e(L/K) | [L : K].

 L/K is ramified (resp. totally ramified) if e(L/K) > 1 (resp. e(L/K) = [L : K]).

Assume that L/K is Galois with group G.

•
$$G_i := \{ \sigma \in G \mid v_L(\sigma(\alpha) - \alpha) \ge i + 1 \text{ for all } \alpha \in \mathcal{O}_L \}, i \ge 0.$$

G_i i-th ramification group.

• Chain of ramification groups for L/K: $G_{-1} := G \supseteq G_0 \supseteq G_1 \supseteq \cdots \supseteq \{1\}.$

• Ramification jump: $t \in \mathbb{Z}_{\geq 1}, G_t \neq G_{t+1}$.

- Problem and main result
- 3 Schema of proof

Let L/K be a degree *p* extension of *p*-adic fields, *p* odd prime. Let \tilde{L} be the normal closure of L/K and let $G = \text{Gal}(\tilde{L}/K)$. Let L/K be a degree *p* extension of *p*-adic fields, *p* odd prime. Let \tilde{L} be the normal closure of L/K and let $G = \text{Gal}(\tilde{L}/K)$. **1st remark:** L/K is Hopf-Galois. Let L/K be a degree p extension of p-adic fields, p odd prime. Let \tilde{L} be the normal closure of L/K and let $G = \text{Gal}(\tilde{L}/K)$. **1st remark:** L/K is Hopf-Galois.

 \overline{K} finite \Longrightarrow *G* solvable \Longrightarrow *L*/*K* Hopf-Galois.

Let \widetilde{L} be the normal closure of L/K and let $G = \operatorname{Gal}(\widetilde{L}/K)$.

1st remark: L/K is Hopf-Galois.

 \overline{K} finite \Longrightarrow *G* solvable \Longrightarrow *L*/*K* Hopf-Galois.

2nd remark: *L*/*K* admits a unique Hopf-Galois structure *H*.

Let \widetilde{L} be the normal closure of L/K and let $G = \operatorname{Gal}(\widetilde{L}/K)$.

1st remark: L/K is Hopf-Galois.

 \overline{K} finite \Longrightarrow *G* solvable \Longrightarrow *L*/*K* Hopf-Galois.

2nd remark: L/K admits a unique Hopf-Galois structure H.

It follows from Byott's uniqueness theorem (*p* is Burnside).

Let \widetilde{L} be the normal closure of L/K and let $G = \operatorname{Gal}(\widetilde{L}/K)$.

1st remark: L/K is Hopf-Galois.

 \overline{K} finite \Longrightarrow *G* solvable \Longrightarrow *L*/*K* Hopf-Galois.

2nd remark: L/K admits a unique Hopf-Galois structure H.

It follows from Byott's uniqueness theorem (*p* is Burnside).

Problem

Let L/K be a degree p extension of p-adic fields and write $\mathfrak{A}_{L/K}$ for the associated order in H. Find a necessary and sufficient condition for \mathcal{O}_L being $\mathfrak{A}_{L/K}$ -free.

Let \widetilde{L} be the normal closure of L/K and let $G = \operatorname{Gal}(\widetilde{L}/K)$.

1st remark: L/K is Hopf-Galois.

 \overline{K} finite \Longrightarrow *G* solvable \Longrightarrow *L*/*K* Hopf-Galois.

2nd remark: L/K admits a unique Hopf-Galois structure *H*.

It follows from Byott's uniqueness theorem (*p* is Burnside).

Problem

Let L/K be a degree p extension of p-adic fields and write $\mathfrak{A}_{L/K}$ for the associated order in H. Find a necessary and sufficient condition for \mathcal{O}_L being $\mathfrak{A}_{L/K}$ -free.

Recall that

$$\mathfrak{A}_{L/K} = \{h \in H \mid h \cdot \mathcal{O}_L \subset \mathcal{O}_L\}.$$

Let
$$r = [\widetilde{L} : L]$$
. Then $G \cong C_p \rtimes C_r$ and $r \mid p - 1$.

Standard result: If L/K is unramified, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. This only might happen when L/K is Galois.

Standard result: If L/K is unramified, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. This only might happen when L/K is Galois.

Assume that L/K is (totally) ramified. Then $G_1 \cong C_p$.

Standard result: If L/K is unramified, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. This only might happen when L/K is Galois.

Assume that L/K is (totally) ramified. Then $G_1 \cong C_p$.

The chain of ramification groups of \tilde{L}/K is

$$G_{-1} \coloneqq G \supseteq G_0 \supseteq G_1 = \cdots = G_t \supseteq \{1\}$$

Standard result: If L/K is unramified, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. This only might happen when L/K is Galois.

Assume that L/K is (totally) ramified. Then $G_1 \cong C_p$.

The chain of ramification groups of \tilde{L}/K is

$$G_{-1} := G \supseteq G_0 \supseteq G_1 = \cdots = G_t \supseteq \{1\}$$

We see that there is a unique ramification jump *t*, which satisfies

$$1 \leq t \leq \frac{r\rho e}{p-1},$$

where $e := e(K/\mathbb{Q}_p)$.

Standard result: If L/K is unramified, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. This only might happen when L/K is Galois.

Assume that L/K is (totally) ramified. Then $G_1 \cong C_p$.

The chain of ramification groups of \tilde{L}/K is

$$G_{-1} \coloneqq G \supseteq G_0 \supseteq G_1 = \cdots = G_t \supsetneq \{1\}$$

We see that there is a unique ramification jump *t*, which satisfies

$$1 \leq t \leq \frac{r\rho e}{p-1},$$

where $e := e(K/\mathbb{Q}_p)$.

It is known that $p \mid t$ if and only if $t = \frac{rpe}{p-1}$.

F. Bertrandias, J. P. Bertrandias, M. J. Ferton (1972): Complete characterization when L/K is Galois.

F. Bertrandias, J. P. Bertrandias, M. J. Ferton (1972): Complete characterization when L/K is Galois.

Theorem

Let L/K be a totally ramified Galois degree p extension of p-adic fields. Let t be the ramification jump of L/K and a = rem(t, p).

• If
$$a = 0$$
, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

2 If $a \mid p - 1$, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. Moreover, if $t < \frac{pe}{p-1} - 1$, the converse holds.

If $t \ge \frac{pe}{p-1} - 1$, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if the length of the continued fraction expansion of $\frac{t}{p}$ is at most 4.

Continued fraction expansion of $\frac{t}{p}$:

$$\frac{t}{p} = [a_0; a_1, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_n}}}.$$

Continued fraction expansion of $\frac{t}{D}$:

$$\frac{t}{p} = [a_0; a_1, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_n}}}.$$

The number *n* is called the **length** of the continued fraction expansion.

Continued fraction expansion of $\frac{t}{D}$:

$$\frac{t}{p} = [a_0; a_1, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_n}}}.$$

The number *n* is called the **length** of the continued fraction expansion.

Every rational number has a continued fraction expansion with finite length.

• F. Bertrandias, M. J. Ferton (1972).

Sketch of proof of the first two statements.

• F. Bertrandias, J. P. Bertrandias, M. J. Ferton (1972).

Sketch of proof of the third statement.

• F. Bertrandias, M. J. Ferton (1972).

Sketch of proof of the first two statements.

• F. Bertrandias, J. P. Bertrandias, M. J. Ferton (1972).

Sketch of proof of the third statement.

• M. J. Ferton PhD dissertation (1972).

Detailed proof of the three statements.
• F. Bertrandias, M. J. Ferton (1972).

Sketch of proof of the first two statements.

• F. Bertrandias, J. P. Bertrandias, M. J. Ferton (1972). Sketch of proof of the third statement.

• M. J. Ferton PhD dissertation (1972).

Detailed proof of the three statements.

• N. P. Byott, L. Childs, G. Elder (2018).

Proof of the second statement (weaker version) using scaffolds.

• F. Bertrandias, M. J. Ferton (1972).

Sketch of proof of the first two statements.

• F. Bertrandias, J. P. Bertrandias, M. J. Ferton (1972). Sketch of proof of the third statement.

• M. J. Ferton PhD dissertation (1972).

Detailed proof of the three statements.

• N. P. Byott, L. Childs, G. Elder (2018).

Proof of the second statement (weaker version) using scaffolds.

• I. Del Corso, F. Ferri, D. Lombardo (2022).

Proof of the first two statements using the notion of minimal index.

G. (2023): Complete characterization when L/K has normal closure \tilde{L} dihedral of degree 2*p*.

G. (2023): Complete characterization when L/K has normal closure \tilde{L} dihedral of degree 2*p*.

If $e(\tilde{L}/K) = p$, the criteria are the same as in the Galois case. Otherwise, \tilde{L}/K is totally ramified. **G. (2023)**: Complete characterization when L/K has normal closure \tilde{L} dihedral of degree 2*p*.

If $e(\tilde{L}/K) = p$, the criteria are the same as in the Galois case. Otherwise, \tilde{L}/K is totally ramified.

Theorem

Let L/K be a degree p extension of p-adic fields with totally ramified dihedral degree 2p normal closure \tilde{L} . Let t be the ramification jump of \tilde{L}/K and let $a = \text{rem}(\ell := \frac{t+p}{2}, p)$.

1 If
$$a = 0$$
, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

- ② If a | p 1, O_L is $\mathfrak{A}_{L/K}$ -free. Moreover, if $t < \frac{2pe}{p-1} 2$, the converse holds.
- If $t \ge \frac{2pe}{p-1} 2$, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if the length of the continued fraction expansion of $\frac{\ell}{p}$ is at most 4.

Theorem

Let L/K be a degree p extension of p-adic fields with totally ramified normal closure \tilde{L} . Let $r = [\tilde{L} : L]$, t be the ramification jump of \tilde{L}/K , let c = rem(t, r) and let $a = \text{rem}(\ell := \frac{t+pc(r-1)}{r}, p)$.

1 If
$$a = 0$$
, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

- 2 If $a \mid p 1$, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. Moreover, if $t < \frac{rpe}{p-1} r$, the converse holds.
- If $t \ge \frac{rpe}{p-1} r$, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if the length of the continued fraction expansion of $\frac{\ell}{p}$ is at most 4.

Theorem

Let L/K be a degree p extension of p-adic fields with totally ramified normal closure \tilde{L} . Let $r = [\tilde{L} : L]$, t be the ramification jump of \tilde{L}/K , let c = rem(t, r) and let $a = \text{rem}(\ell := \frac{t+pc(r-1)}{r}, p)$.

1 If
$$a = 0$$
, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

- 2 If $a \mid p 1$, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. Moreover, if $t < \frac{rpe}{p-1} r$, the converse holds.
- If $t \ge \frac{rpe}{p-1} r$, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if the length of the continued fraction expansion of $\frac{\ell}{p}$ is at most 4.

• Why $\ell \in \mathbb{Z}$?

Theorem

Let L/K be a degree p extension of p-adic fields with totally ramified normal closure \tilde{L} . Let $r = [\tilde{L} : L]$, t be the ramification jump of \tilde{L}/K , let c = rem(t, r) and let $a = \text{rem}(\ell := \frac{t+pc(r-1)}{r}, p)$.

1 If
$$a = 0$$
, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

- 2 If $a \mid p 1$, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. Moreover, if $t < \frac{rpe}{p-1} r$, the converse holds.
- If $t \ge \frac{rpe}{p-1} r$, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if the length of the continued fraction expansion of $\frac{\ell}{p}$ is at most 4.
 - Why $\ell \in \mathbb{Z}$?
 - What if \tilde{L}/K is not totally ramified?

• Why $\ell \in \mathbb{Z}$?

Since $c = \operatorname{rem}(t, r)$, $t \equiv c \pmod{r}$.

• Why $\ell \in \mathbb{Z}$?

Since $c = \operatorname{rem}(t, r)$, $t \equiv c \pmod{r}$. In addition, $r \mid p - 1 \Longrightarrow p \equiv 1 \pmod{r}$.

• Why
$$\ell \in \mathbb{Z}$$
?

Since $c = \operatorname{rem}(t, r)$, $t \equiv c \pmod{r}$. In addition, $r \mid p - 1 \Longrightarrow p \equiv 1 \pmod{r}$. Thus,

$$t + pc(r-1) \equiv c - c = 0 \pmod{r}.$$

• Why
$$\ell \in \mathbb{Z}$$
?

Since $c = \operatorname{rem}(t, r)$, $t \equiv c \pmod{r}$. In addition, $r \mid p - 1 \Longrightarrow p \equiv 1 \pmod{r}$. Thus,

$$t + pc(r-1) \equiv c - c = 0 \pmod{r}.$$

Hence, $\ell \in \mathbb{Z}$.

```
What if L̃/K is not totally ramified?
L̃
H
K
```

Н

Κ

Let *L'* (resp. *K'*) be the inertia field of \tilde{L}/L (resp. \tilde{L}/K) and let $H' = K' \otimes_K H$.

Let L' (resp. K') be the inertia field of \tilde{L}/L (resp. \tilde{L}/K) and let $H' = K' \otimes_K H$.

Let L' (resp. K') be the inertia field of \tilde{L}/L (resp. \tilde{L}/K) and let $H' = K' \otimes_K H$.

Proposition

L'/K' is a degree p extension of p-adic fields with totally ramified normal closure and \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if $\mathcal{O}_{L'}$ is $\mathfrak{A}_{L'/K'}$ -free.

Then, we may assume without loss of generality that L/K is totally ramified.

- Problem and main result
- 3 Schema of proof

We recall the main result.

We recall the main result.

Theorem

Let L/K be a degree p extension of p-adic fields with totally ramified normal closure \tilde{L} . Let $r = [\tilde{L} : L]$, t be the ramification jump of \tilde{L}/K , let $c = \operatorname{rem}(t, r)$ and let $a = \operatorname{rem}(\ell := \frac{t + pc(r-1)}{r}, p)$.

1 If
$$a = 0$$
, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

- 2 If $a \mid p 1$, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free. Moreover, if $t < \frac{rpe}{p-1} r$, the converse holds.
- If $t \ge \frac{rpe}{p-1} r$, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if the length of the continued fraction expansion of $\frac{\ell}{p}$ is at most 4.

• This is the condition that $p \mid \ell = \frac{t + pc(r-1)}{r}$, so $p \mid t$ and $t = \frac{rpe}{p-1}$.

- 1. If a = 0, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.
- This is the condition that $p \mid \ell = \frac{t + pc(r-1)}{r}$, so $p \mid t$ and $t = \frac{rpe}{p-1}$.
- Let *M* be such that *LM* = *L*. By the Galois case, *L* = *M*(γ) for some γ ∈ O_{*i*} which is a *p*-th root of a uniformizer of *M*.

- This is the condition that $p \mid \ell = \frac{t + pc(r-1)}{r}$, so $p \mid t$ and $t = \frac{rpe}{p-1}$.
- Let *M* be such that *LM* = *L*. By the Galois case, *L* = *M*(γ) for some γ ∈ O_{*i*} which is a *p*-th root of a uniformizer of *M*.
- Now, L = K(α) for α = N_{L/L}(γ), and this is a p-th root of a uniformizer of K.

- This is the condition that $p \mid \ell = \frac{t + pc(r-1)}{r}$, so $p \mid t$ and $t = \frac{rpe}{p-1}$.
- Let *M* be such that *LM* = *L*. By the Galois case, *L* = *M*(γ) for some γ ∈ O₁ which is a *p*-th root of a uniformizer of *M*.
- Now, L = K(α) for α = N_{L/L}(γ), and this is a p-th root of a uniformizer of K.
- We prove that α is an eigenvector of the action of H, which allows us to obtain an O_K-basis of 𝔅_H of primitive pairwise orthogonal idempotents.

- This is the condition that $p \mid \ell = \frac{t + pc(r-1)}{r}$, so $p \mid t$ and $t = \frac{rpe}{p-1}$.
- Let *M* be such that *LM* = *L*. By the Galois case, *L* = *M*(γ) for some γ ∈ O₁ which is a *p*-th root of a uniformizer of *M*.
- Now, L = K(α) for α = N_{L/L}(γ), and this is a p-th root of a uniformizer of K.
- We prove that α is an eigenvector of the action of H, which allows us to obtain an O_K-basis of 𝔅_H of primitive pairwise orthogonal idempotents.
- We use this basis to establish an isomorphism $\varphi: H \longrightarrow K^p$ of K-algebras such that $\varphi(\mathfrak{A}_{L/K}) = \mathcal{O}_K^p$.

- This is the condition that $p \mid \ell = \frac{t + pc(r-1)}{r}$, so $p \mid t$ and $t = \frac{rpe}{p-1}$.
- Let *M* be such that *LM* = *L*. By the Galois case, *L* = *M*(γ) for some γ ∈ O_{*i*} which is a *p*-th root of a uniformizer of *M*.
- Now, L = K(α) for α = N_{L/L}(γ), and this is a p-th root of a uniformizer of K.
- We prove that α is an eigenvector of the action of H, which allows us to obtain an O_K-basis of 𝔄_H of primitive pairwise orthogonal idempotents.
- We use this basis to establish an isomorphism
 φ: H → K^p of K-algebras such that φ(𝔄_{L/K}) = O^p_K.

Therefore, $\mathfrak{A}_{L/K}$ is the maximal \mathcal{O}_{K} -order in $H \Longrightarrow \mathcal{O}_{L}$ is $\mathfrak{A}_{L/K}$ -free.

G. Elder; *Ramified extensions of degree p and their Hopf-Galois module structure* J. Théor. Nr. Bordx. 1 (2018), 19-40.

G. Elder; *Ramified extensions of degree p and their Hopf-Galois module structure* J. Théor. Nr. Bordx. 1 (2018), 19-40.

Typical extensions: Separable totally ramified degree *p* extensions of local fields that are not generated by a root of a prime element.

G. Elder; *Ramified extensions of degree p and their Hopf-Galois module structure* J. Théor. Nr. Bordx. 1 (2018), 19-40.

Typical extensions: Separable totally ramified degree *p* extensions of local fields that are not generated by a root of a prime element.

Main theorem (particular case): The typical degree *p* extensions of *p*-adic fields with totally ramified normal closure are the ones defined by an equation

$$x^{p} - \alpha^{\frac{p-1}{r}} x - \beta = \mathbf{0},$$

with $v_{\mathcal{K}}(\alpha) = c$, $v_{\mathcal{K}}(\beta) = -b$, where $b, c \in \mathbb{Z}$ are such that $0 \le c < r$, gcd(c, r) = 1 and $1 \le bc + pr \le \frac{rpe}{p-1}$.

G. Elder; *Ramified extensions of degree p and their Hopf-Galois module structure* J. Théor. Nr. Bordx. 1 (2018), 19-40.

Typical extensions: Separable totally ramified degree p extensions of local fields that are not generated by a root of a prime element.

Main theorem (particular case): The typical degree *p* extensions of *p*-adic fields with totally ramified normal closure are the ones defined by an equation

$$x^{p} - \alpha^{\frac{p-1}{r}} x - \beta = \mathbf{0},$$

with $v_{\mathcal{K}}(\alpha) = c$, $v_{\mathcal{K}}(\beta) = -b$, where $b, c \in \mathbb{Z}$ are such that $0 \le c < r$, gcd(c, r) = 1 and $1 \le bc + pr \le \frac{rpe}{p-1}$.

Moreover, the ramification jump of \tilde{L}/K is t = br + pc.

Since $p \nmid t$, L/K is typical. Let $x^p - \alpha^{\frac{p-1}{r}}x - \beta = 0$ be its defining equation.
We can give a description of the underlying Hopf algebra of H.

We can give a description of the underlying Hopf algebra of H.

Theorem

Let L/K be a typical degree p extension of p-adic fields. The only Hopf-Galois structure on L/K is H = K[w], where

$$w = y^{r-1} \Big(\sum_{m=1}^{p-1} \chi(m)^{-1} \sigma^m \Big).$$

Moreover, $w^p = \varepsilon p y^{(p-1)(r-1)} w$, $\varepsilon \in \mathcal{O}_K^*$.

We can give a description of the underlying Hopf algebra of H.

Theorem

Let L/K be a typical degree p extension of p-adic fields. The only Hopf-Galois structure on L/K is H = K[w], where

$$w = y^{r-1} \Big(\sum_{m=1}^{p-1} \chi(m)^{-1} \sigma^m \Big).$$

Moreover, $w^{p} = \varepsilon p y^{(p-1)(r-1)} w$, $\varepsilon \in \mathcal{O}_{K}^{*}$.

•
$$\widetilde{L} = L(y)$$
 with $y^r = \alpha$ (by Elder's result).

We can give a description of the underlying Hopf algebra of H.

Theorem

Let L/K be a typical degree p extension of p-adic fields. The only Hopf-Galois structure on L/K is H = K[w], where

$$w = y^{r-1} \Big(\sum_{m=1}^{p-1} \chi(m)^{-1} \sigma^m \Big).$$

Moreover, $w^{p} = \varepsilon p y^{(p-1)(r-1)} w$, $\varepsilon \in \mathcal{O}_{K}^{*}$.

•
$$\widetilde{L} = L(y)$$
 with $y^r = \alpha$ (by Elder's result).

• σ is an order p generator of $G \cong C_p \rtimes C_r$.

We can give a description of the underlying Hopf algebra of H.

Theorem

Let L/K be a typical degree p extension of p-adic fields. The only Hopf-Galois structure on L/K is H = K[w], where

$$w = y^{r-1} \Big(\sum_{m=1}^{p-1} \chi(m)^{-1} \sigma^m \Big).$$

Moreover, $w^{p} = \varepsilon p y^{(p-1)(r-1)} w$, $\varepsilon \in \mathcal{O}_{K}^{*}$.

- $\widetilde{L} = L(y)$ with $y^r = \alpha$ (by Elder's result).
- σ is an order p generator of $G \cong C_p \rtimes C_r$.
- $\chi: \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{Z}_p$ is the *p*-adic Teichmuller character.

The knowledge of w and the degree p polynomial it satisfies allows us to have a good control on the action of H on L and, especially, their valuations.

The knowledge of w and the degree p polynomial it satisfies allows us to have a good control on the action of H on L and, especially, their valuations.

Proposition

Let L/K be a typical degree p extension of p-adic fields and let H = K[w] be its only Hopf-Galois structure. Call $\ell = \frac{pc(r-1)+t}{r}$. Given $x \in L$, $v_l(w \cdot x) > \ell + v_l(x)$,

with equality if and only if $p \nmid v_L(x)$.

The knowledge of w and the degree p polynomial it satisfies allows us to have a good control on the action of H on L and, especially, their valuations.

Proposition

Let L/K be a typical degree p extension of p-adic fields and let H = K[w] be its only Hopf-Galois structure. Call $\ell = \frac{pc(r-1)+t}{r}$. Given $x \in L$, $v_l(w \cdot x) > \ell + v_l(x)$,

with equality if and only if $p \nmid v_L(x)$.

In other words, *w* raises the valuations of elements at least ℓ , and exactly ℓ if and only if such a valuation is not divisible by *p*.

$$\mathfrak{A}_{\theta} = \{ h \in H \, | \, h \cdot \theta \in \mathcal{O}_L \}.$$

$$\mathfrak{A}_{\theta} = \{ h \in H \, | \, h \cdot \theta \in \mathcal{O}_L \}.$$

 $\mathfrak{A}_{L/K} \subseteq \mathfrak{A}_{\theta}$ and \mathfrak{A}_{θ} is an $\mathfrak{A}_{L/K}$ -fractional ideal.

$$\mathfrak{A}_{\theta} = \{h \in H \,|\, h \cdot \theta \in \mathcal{O}_L\}.$$

 $\mathfrak{A}_{L/K} \subseteq \mathfrak{A}_{\theta}$ and \mathfrak{A}_{θ} is an $\mathfrak{A}_{L/K}$ -fractional ideal.

Proposition

The following statements are equivalent:

• \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

•
$$\mathfrak{A}_{L/K} = \mathfrak{A}_{ heta}$$
 for some $heta \in \mathcal{O}_L$.

• \mathfrak{A}_{θ} is a principal $\mathfrak{A}_{L/K}$ -fractional ideal for some (any) $\theta \in \mathcal{O}_L$.

$$\mathfrak{A}_{\theta} = \{h \in H \,|\, h \cdot \theta \in \mathcal{O}_L\}.$$

 $\mathfrak{A}_{L/K} \subseteq \mathfrak{A}_{\theta}$ and \mathfrak{A}_{θ} is an $\mathfrak{A}_{L/K}$ -fractional ideal.

Proposition

The following statements are equivalent:

•
$$\mathcal{O}_L$$
 is $\mathfrak{A}_{L/K}$ -free.

•
$$\mathfrak{A}_{L/K} = \mathfrak{A}_{ heta}$$
 for some $heta \in \mathcal{O}_L$.

• \mathfrak{A}_{θ} is a principal $\mathfrak{A}_{L/K}$ -fractional ideal for some (any) $\theta \in \mathcal{O}_L$.

Thanks to *w*, we can find $\mathcal{O}_{\mathcal{K}}$ -bases of $\mathfrak{A}_{L/\mathcal{K}}$ and \mathfrak{A}_{θ} with $\theta = \pi_{L}^{a}$.

This is the scaffolds part.

This is the *scaffolds* part.

Roughly speaking, a scaffold on L/K consists in families of elements $\Psi_i \in H$ and $\lambda_j \in L$ such that the elements $\Psi_i \cdot \lambda_j$ have a prescribed valuation depending on *i* and *j* up to a certain precision c.

This is the *scaffolds* part.

Roughly speaking, a scaffold on L/K consists in families of elements $\Psi_i \in H$ and $\lambda_j \in L$ such that the elements $\Psi_i \cdot \lambda_j$ have a prescribed valuation depending on *i* and *j* up to a certain precision \mathfrak{c} .

If the precision is high enough, we obtain conditions for freeness.

This is the *scaffolds* part.

Roughly speaking, a scaffold on L/K consists in families of elements $\Psi_i \in H$ and $\lambda_j \in L$ such that the elements $\Psi_i \cdot \lambda_j$ have a prescribed valuation depending on *i* and *j* up to a certain precision c.

If the precision is high enough, we obtain conditions for freeness.

- Weak requirement ~> Sufficient condition for freeness.
- Strong requirement → Necessary and sufficient condition for freeness.

$$\mathfrak{c}=\frac{p-1}{r}\Big(\frac{rpe}{p-1}-t\Big).$$

$$\mathfrak{c}=\frac{p-1}{r}\Big(\frac{rpe}{p-1}-t\Big).$$

- Weak requirement: $\mathfrak{c} \geq a$.
- Strong requirement: c > a.
- Condition: $\mathfrak{A}_{L/K} = \mathfrak{A}_{\theta}, \ \theta = \pi_L^a \iff a \mid p-1$).

$$\mathfrak{c}=\frac{p-1}{r}\Big(\frac{rpe}{p-1}-t\Big).$$

- Weak requirement: $c \ge a$.
- Strong requirement: c > a.
- Condition: $\mathfrak{A}_{L/K} = \mathfrak{A}_{\theta}, \ \theta = \pi_L^a \iff a \mid p-1$).

Let a_0 be the integer part of $\frac{\ell}{p}$ and denote

$$\nu_{p-1}=a+(p-1)a_0.$$

$$\mathfrak{c}=\frac{p-1}{r}\Big(\frac{rpe}{p-1}-t\Big).$$

- Weak requirement: $c \ge a$.
- Strong requirement: c > a.
- Condition: $\mathfrak{A}_{L/K} = \mathfrak{A}_{\theta}, \ \theta = \pi_L^a \iff a \mid p-1$).

Let a_0 be the integer part of $\frac{\ell}{p}$ and denote

$$\nu_{p-1}=a+(p-1)a_0.$$

We can rewrite

$$\mathfrak{c} = p\left(e + \frac{p-1}{r}(r-1)c - \nu_{p-1}\right) + a.$$

$$\mathfrak{c} = p\Big(e + \frac{p-1}{r}(r-1)c - \nu_{p-1}\Big) + a.$$

$$\mathfrak{c} = p\Big(e + rac{p-1}{r}(r-1)c -
u_{p-1}\Big) + a.$$

Then the weak requirement $c \ge a$ is always met, so $a \mid p - 1 \Longrightarrow \mathcal{O}_L$ is $\mathfrak{A}_{L/K}$ -free.

$$\mathfrak{c} = p\Big(e + rac{p-1}{r}(r-1)c -
u_{p-1}\Big) + a.$$

Then the weak requirement $c \ge a$ is always met, so $a \mid p - 1 \Longrightarrow \mathcal{O}_L$ is $\mathfrak{A}_{L/K}$ -free.

On the other hand, c > a holds if and only if $e + \frac{p-1}{r}(r-1)c - \nu_{p-1} > 0$.

$$\mathfrak{c} = p\Big(e + rac{p-1}{r}(r-1)c -
u_{p-1}\Big) + a.$$

Then the weak requirement $c \ge a$ is always met, so $a \mid p-1 \Longrightarrow \mathcal{O}_L$ is $\mathfrak{A}_{L/K}$ -free.

On the other hand, c > a holds if and only if $e + \frac{p-1}{r}(r-1)c - \nu_{p-1} > 0.$

This is equivalent to $t < \frac{rpe}{p-1} - r$.

$$\mathfrak{c} = p\Big(e + rac{p-1}{r}(r-1)c -
u_{p-1}\Big) + a.$$

Then the weak requirement $c \ge a$ is always met, so $a \mid p - 1 \Longrightarrow \mathcal{O}_L$ is $\mathfrak{A}_{L/K}$ -free.

On the other hand, c > a holds if and only if $e + \frac{p-1}{r}(r-1)c - \nu_{p-1} > 0.$

This is equivalent to $t < \frac{rpe}{p-1} - r$.

Therefore, when $t < \frac{rpe}{p-1} - r$, \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free if and only if $a \mid p-1$.

This is the *continued fractions* part.

This is the continued fractions part.

For each $\alpha \in \mathfrak{A}_{\theta}$ consider the map

$$\begin{array}{cccc} \psi_{\alpha} \colon & \mathfrak{A}_{L/K} & \longrightarrow & \mathfrak{A}_{\theta} \\ & \lambda & \longmapsto & \lambda \alpha \end{array}$$

This is the continued fractions part.

For each $\alpha \in \mathfrak{A}_{\theta}$ consider the map

$$\begin{array}{cccc} \psi_{\alpha} \colon & \mathfrak{A}_{L/K} & \longrightarrow & \mathfrak{A}_{\theta} \\ & \lambda & \longmapsto & \lambda \alpha \end{array}$$

Let $M(\alpha)$ be the matrix of ψ_{α} with respect to the known bases of $\mathfrak{A}_{L/K}$ and \mathfrak{A}_{θ} .

This is the continued fractions part.

For each $\alpha \in \mathfrak{A}_{\theta}$ consider the map

$$\psi_{lpha} \colon \mathfrak{A}_{L/K} \longrightarrow \mathfrak{A}_{ heta}$$

 $\lambda \longmapsto \lambda lpha$

Let $M(\alpha)$ be the matrix of ψ_{α} with respect to the known bases of $\mathfrak{A}_{L/K}$ and \mathfrak{A}_{θ} .

Then \mathfrak{A}_{θ} is $\mathfrak{A}_{L/K}$ -principal if and only if $\det(M(\alpha)) \not\equiv 0 \pmod{\mathfrak{p}_K}$ for some $\alpha \in \mathfrak{A}_{\theta}$.

$$E = \Big\{ h \in \mathbb{Z} \mid 1 \le h < p, \ 1 \le h' < h \Longrightarrow \widehat{h' \frac{a}{p}} > \widehat{h \frac{a}{p}} \Big\},\$$

which is parametrized in terms of the continued fraction expansion of $\frac{\ell}{\rho}$.

$$E = \Big\{ h \in \mathbb{Z} \mid 1 \le h < p, \ 1 \le h' < h \implies \widehat{h' \frac{a}{p}} > \widehat{h \frac{a}{p}} \Big\},\$$

which is parametrized in terms of the continued fraction expansion of $\frac{\ell}{\rho}$.

Let *n* be the length of the continued fraction expansion of $\frac{\ell}{\rho}$.

$$E = \Big\{ h \in \mathbb{Z} \mid 1 \le h < p, \ 1 \le h' < h \implies \widehat{h' \frac{a}{p}} > \widehat{h \frac{a}{p}} \Big\},\$$

which is parametrized in terms of the continued fraction expansion of $\frac{\ell}{\rho}$.

Let *n* be the length of the continued fraction expansion of $\frac{\ell}{p}$.

• If $n \leq 2$, then $a \mid p - 1$ and we already know that \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

$$E = \Big\{ h \in \mathbb{Z} \mid 1 \le h < p, \ 1 \le h' < h \implies \widehat{h' \frac{a}{p}} > \widehat{h \frac{a}{p}} \Big\},\$$

which is parametrized in terms of the continued fraction expansion of $\frac{\ell}{\rho}$.

Let *n* be the length of the continued fraction expansion of $\frac{\ell}{p}$.

- If $n \leq 2$, then $a \mid p 1$ and we already know that \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.
- If n ∈ {3,4}, we construct an α for which det(M(α)) ≠ 0 (mod p_K), so O_L is 𝔄_{L/K}-free.

$$E = \Big\{ h \in \mathbb{Z} \mid 1 \le h < p, \ 1 \le h' < h \implies \widehat{h' \frac{a}{p}} > \widehat{h \frac{a}{p}} \Big\},\$$

which is parametrized in terms of the continued fraction expansion of $\frac{\ell}{\rho}$.

Let *n* be the length of the continued fraction expansion of $\frac{\ell}{p}$.

- If $n \leq 2$, then $a \mid p 1$ and we already know that \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.
- If n ∈ {3,4}, we construct an α for which det(M(α)) ≠ 0 (mod p_K), so O_L is 𝔄_{L/K}-free.
- If $n \ge 5$, we prove that $det(M(\alpha)) \equiv 0 \pmod{\mathfrak{p}_K}$ for all $\alpha \in \mathfrak{A}_{\theta}$, so \mathcal{O}_L is not $\mathfrak{A}_{L/K}$ -free.
Proposition

If $G \cong C_p$ or D_p and e = 1, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

This does not necessarily hold in the general case.

Proposition

If
$$G \cong C_p$$
 or D_p and $e = 1$, then \mathcal{O}_L is $\mathfrak{A}_{L/K}$ -free.

This does not necessarily hold in the general case.

Example

Let L/K be a typical degree p extension with p = 13, e = 1, r = 12 and t = 5. Then c = 5 and $\ell = 60$. Now,

$$\frac{\ell}{\rho} = \frac{60}{13} = [4; 1, 1, 1, 1, 2].$$

Then n = 5 and \mathcal{O}_L is not $\mathfrak{A}_{L/K}$ -free.

Bibliography

- F. Bertrandias, M. J. Ferton; Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local (I), C.R. Acad. Sc. 18 Vol. 274 (1972), 1388-1391.
- F. Bertrandias, J. P. Bertrandias, M. J. Ferton; Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local (II), C.R. Acad. Sc. 18 Vol. 274 (1972), 1388-1391.
- N. Byott, L. Childs, G. Elder; Scaffolds and generalized integral Galois module structure, Ann. Inst. Fourier 68 Vol. 3 (2018), 965-1010.
- L.N. Childs; Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, Mathematical Surveys and Monographs 80, American Mathematical Society, 2000.

- I. Del Corso, F. Ferri, D. Lombardo; How far is an extension of p-adic fields from having a normal integral basis?, Journal of Number Theory, Vol. 233 (2022), 158-197.
- G. Elder; *Ramified extensions of degree p and their Hopf-Galois module structure* J. Théor. Nr. Bordx. 1 (2018), 19-40.
- M. J. Ferton; Sur l'anneau des entiers d'extensions cycliques de degré p et d'extensions diédrales de degré 2p d'un corps local, PhD thesis, University of Grenoble, 1972.
- D. Gil-Muñoz; The ring of integers of Hopf-Galois degree p extensions of p-adic fields with dihedral normal closure, J. Number Theory 245 (2023), 65-118.
- D. Gil-Muñoz; *Hopf-Galois module structure of degree p extensions of p-adic fields,* Preprint (2024).

Thank you for your attention