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The Nottingham group and its subgroups

Let k be a finite field of characteristic p. The Nottingham group for k,
denoted N (k), consists of all power series ϕ(t) ∈ k[[t]] of the form
ϕ(t) = t + a1t2 + a2t3 + · · · , with the operation of substitution.

N (k) is a pro-p group. It follows from a theorem of Witt [Wi36] that
every finite p-group G is isomorphic to a subgroup of N (k).

Problem: For a finite p-group G , find representatives for the conjugacy
classes of subgroups of N (k) which are isomorphic to G .

Klopsch solved this problem in the case where G ∼= Cp is a cyclic group of
order p.



Klopsch’s classification
Let a ∈ k× and let m ≥ 1 be such that p ∤ m. Define ψm,a ∈ N (k) by

ψm,a(t) = t(1 − matm)−1/m

= t + atm+1 + · · · .

For r ∈ Z we have ψ◦r
m,a = t(1 − rmatm)−1/m. Hence ψm,a has order p.

Theorem (Klopsch [Kl00])
For each ϕ ∈ N (k) with order p there are uniquely determined a ∈ k× and
m ≥ 1 with p ∤ m such that ϕ is conjugate to ψm,a.

This leads to an explicit classification of the conjugacy classes of cyclic
subgroups of N (k) of order p.

Finding formulas for elements of more complicated finite subgroups of
N (k) has proven to be difficult.

For instance, the only cases for which elements of N (k) of order pd with
d ≥ 2 have been explicitly constructed are those with p = 2 and d = 2.



Finite automata and elements of N (k)

It was proposed by Byszewski, Cornelissen, and Tijsma [BCT22] that
elements of finite subgroups of N (k) should be described in terms of finite
automata.

The basis for this approach is Christol’s theorem, which says that∑∞
n=0 antn ∈ k[[t]] is algebraic over the rational function field k(t) if and

only if the coefficient sequence (an) is the output of a finite automaton of
an appropriate type.

In [BCT22], automata are used to construct abelian subgroups of
Nottingham groups. Specifically, subgroups of N (F2) which are
isomorphic to C4, C8, and C2 × C2 are constructed there.

In this talk I will show how to use automata to construct subgroups of
N (F4) which are isomorphic to the nonabelian groups Q8 and D4.



Finite automata
We wish to describe elements of N (k) using finite automata.

Suppose k ∼= Fq. Then our automata will use {0, 1, 2, . . . , q − 1} as input
alphabet and k as output alphabet.

An automaton is a directed multigraph with loops such that every vertex
has outdegree q. The edges and vertices of the graph have labels with the
following properties:

The edges emanating from a vertex v are labeled with the elements of
the input alphabet {0, 1, 2, . . . , q − 1}, with each label appearing
exactly once.
The vertices are labeled with elements of the output alphabet k.
If an edge with label 0 connects v1 to v2 then the vertices v1, v2 must
have the same label.

In addition, one of the vertices should be marked “Start”.

The vertices of the automaton are also referred to as “states”.



Automatic sequences
An automaton can be used to generate an “automatic sequence” as
follows:

Let n ≥ 0 and write n in base q as

n = dr dr−1 . . . d1d0 = d0q0 + d1q1 + · · · + dr qr .

Beginning at the Start vertex, trace the path though the digraph given by
the edges labeled d0, d1, . . . , dr−1, dr .

The nth term in our automatic sequence is the label attached to the final
vertex in this path. Thanks to the restriction on the vertex labeling, adding
leading 0s to the base-q representation of n doesn’t change the output.

Theorem (Christol [Ch79])∑∞
n=0 antn ∈ k[[t]] is algebraic over k(t) if and only if (an)n≥0 is an

automatic sequence of the type described above.



A finite automaton
Input alphabet: {0, 1, 2}
Output alphabet: F3 = {0, 1, 2}

State 0 1 2 label
1 2 3 4 0
2 1 5 4 0
3 3 4 5 1
4 4 4 4 0
5 5 4 3 2

Directed edges leading from a state
to itself are not drawn.

This automaton produces the
sequence of coefficients of the
order-3 Klopsch series ψ2,2 ∈ N (F3):

t(1−t2)−1/2 = t+2t3+2t7+t9+O(t19).

0

1

Start

0
4

1

3

0
2

2 5

0 1 2



The group A(k) and automorphisms of local fields

The set

A(k) = {a0t + a1t2 + a2t3 + · · · : ai ∈ k, a0 ̸= 0},

with the operation of substitution forms a group. There is an exact
sequence

1 −→ N (k) −→ A(k) −→ k× −→ 1.

Let E be a local field of characteristic p with residue field k; thus
E ∼= k((x)).

Let πE be a uniformizer for E and let σ ∈ Autk(E ). Then there is a
uniquely determined ϕσ(t) ∈ A(k) such that σ(πE ) = ϕσ(πE ).

The map θπE : Autk(E ) → A(k) defined by θπE (σ) = ϕσ is an
anti-isomorphism.



The Nottingham group and wild automorphisms

Say σ ∈ Autk(E ) is a wild automorphism of E if σ(πE ) + M2
E = πE + M2

E .

The wild automorphisms of E form a subgroup Aut1
k(E ) of Autk(E ). The

anti-isomorphism θπE : Autk(E ) → A(k) maps Aut1
k(E ) onto N (k).

Let F be a subfield of E such that E/F is a finite totally ramified Galois
p-extension. Then Gal(E/F ) ≤ Aut1

k(E ) and θπE (Gal(E/F )) is a finite
subgroup of N (k).

Conversely, given a finite subgroup G of N (k), set G = θ−1
πE (G). Then

E/EG is a finite totally ramified Galois p-extension.



Depth and ramification
Define the depth of ϕ ∈ N (k) by D(ϕ) = vt(ϕ(t) − t) − 1.

Let G be a finite subgroup of N (k). For n ≥ 1 define
Gn = {ϕ ∈ G : D(ϕ) ≥ n}. Then Gn is a normal subgroup of G, known as
the nth ramification subgroup of G.

We say that b ≥ 1 is a ramification break of G if Gb ̸= Gb+1.

If |Gb : Gb+1| = pm say that b is a ramification break with multiplicity m.

Let |G| = pn. Then G has n ramification breaks b1 ≤ b2 ≤ · · · ≤ bn,
counted with multiplicities.

Let E/F be a finite totally ramified Galois p-extension. Set
G = θπE (Gal(E/F )). Then G ≤ N (k).

The ramification filtration on G induces a ramification filtration on
Gal(E/F ). We define the ramification breaks of Gal(E/F ) (or of E/F ) to
be the same as the ramification breaks of G.



A category of field extensions
Let k be a finite field. We define a category Ck whose objects are pairs
(i : F → E , πF + M2

F ), where
F , E are local fields of characteristic p with residue field k,
i is a k-algebra embedding such that E/i(F ) is a Galois p-extension.
πF + M2

F is a generator for the OF -module MF/M2
F .

A Ck -morphism

(γ, Γ) : (i1 : F1 → E1, πF1 + M2
F1) −→ (i2 : F2 → E2, πF2 + M2

F2)

consists of k-algebra isomorphisms γ : F1 → F2 and Γ : E1 → E2 such that

Γ ◦ i1 = i2 ◦ γ,
γ(πF1) + M2

F2
= πF2 + M2

F2
.
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Isomorphisms of Galois groups

It follows from the definition that every Ck -morphism is an isomorphism.

Suppose we have a Ck -isomorphism

(γ, Γ) : (i1 : F1 → E1, πF1 + M2
F1)

∼−−→ (i2 : F2 → E2, πF2 + M2
F2).

Then there is an isomorphism of filtered groups

Gal(E1/i1(F1)) ∼−−→ Gal(E2/i2(F2))

which maps σ ∈ Gal(E1/i1(F1)) to Γ ◦ σ ◦ Γ−1.



Some subcategories of Ck
Let E be a local field of characteristic p with residue field k and let πE be
a uniformizer for E . Let CE ,πE denote the full subcategory of Ck whose
objects have the form (i : F → E , πF + M2

F ), where E/F is a totally
ramified Galois p-extension, i : F → E is inclusion, and πF = NE/F (πE ).
A morphism from (i1 : F1 → E , πF1 + M2

F1
) to (i2 : F2 → E , πF2 + M2

F2
) is

a wild automorphism of E which maps F1 onto F2.

Let K be a local field of characteristic p with residue field k and let πK be
a uniformizer for K . Let CK ,πK denote the full subcategory of Ck whose
objects are of the form (i : K → L, πK + M2

K ), where L/K is a totally
ramified Galois p-extension and i : K → L is inclusion.
A morphism from (i1 : K → L1, πK + M2

K ) to (i2 : K → L2, πK + M2
K ) is

an isomorphism from L1 to L2 which induces a wild automorphism of K .

Since all our fields are isomorphic to k((t)), every object in Ck is
isomorphic to an object in CE ,πE , and to an object in CK ,πK . Hence the
inclusions of CE ,πE and CK ,πK into Ck are equivalences of categories.



Subgroups of N (k) and field extensions
Let G and H be finite subgroups of Aut1

k(E ). Then θπE (G) is conjugate to
θπE (H) in N (k) if and only if the objects in CE ,πE which correspond to G
and H are isomorphic, i.e.,

(i : EG → E ,NE/EG (πE ) + M2
EG ) ∼= (i : EH → E , NE/EH (πE ) + M2

EH ).

Therefore we get:

Proposition
Let G be a finite p-group, let K be a local field of characteristic p with
residue field k, and let πK be a uniformizer of K. Then there is a
one-to-one correspondence between

Isomorphism classes of objects (i : K → L, πK + M2
K ) ∈ CK ,πK such

that L/K is a G-extension.
Conjugacy classes of subgroups of N (k) which are isomorphic to G.

This bijection maps the isomorphism class of (i : K → L, πK + M2
K ) to

the conjugacy class represented by θπL(Gal(L/K )), where πL is any
uniformizer of L such that NL/K (πL) + M2

K = πK + M2
K .



Elementary abelian extensions of F4((u))
Let Q8 be the quaternion group and let D4 be the dihedral group of order
8. We wish to construct totally ramified Q8-extensions and D4-extensions
of K with minimum ramification breaks.

As a first step, we construct a totally ramified (C2 × C2)-extension with
minimum ramification breaks.

Let k = F4 be the finite field with 4 elements and let s ∈ F4 ∖ F2. Then
s2 + s + 1 = 0 and F4 = {0, 1, s, s2}. Let K = F4((u)) be the field of
formal Laurent series over F4.

Proposition
There is a single Ck -isomorphism class of pairs

(i : K → M, u + M2
K ) ∈ CK ,u,

such that M/K is a totally ramified (C2 × C2)-extension with ramification
breaks 1,1.



An explicit description of M
We define the Artin-Schreier operator on fields of characteristic p = 2 by
℘(x) = xp − x = x2 − x .

Recall that K = F4((u)). Let α1, α2 ∈ K sep satisfy ℘(α1) = su−1 and
℘(α2) = s2u−1. Then M = K (α1, α2) is a totally ramified
(C2 × C2)-extension of K with ramification breaks 1,1.

Lemma
Set y = sα1 + s2α2. Then

α1 = ℘(sy) = s2y2 + sy ,
α2 = ℘(s2y) = sy2 + s2y.
u−1 = ℘(℘(y)) = y4 + y,

It follows that vM(y) = −1, so y−1 is a uniformizer for M.

Let σ1, σ2 ∈ Gal(M/K ) be defined by σ1(α1) = α1 + 1, σ1(α2) = α2,
σ2(α1) = α1, and σ2(α2) = α2 + 1.

Then σ1(y) = y + s and σ2(y) = y + s2.



Quaternion extensions of K

Proposition
Let M/K be a totally ramified (C2 × C2)-extension
with ramification breaks 1,1 and write M = K (y) as
above. There are precisely two C2-extensions L/M
such that L/K is a totally ramified Q8-extension
with ramification breaks 1, 1, 3. These are generated
over M by the roots of X 2 − X − y3 − δ, with
δ ∈ {0, s}.

M

L

K

C2 × C2

C2

Q8

Corollary
There are two conjugacy classes of subgroups of N (F4) which are
isomorphic to Q8 and have ramification breaks 1, 1, 3.



A uniformizer for L
Assume for now that δ = 0.

Let α3 ∈ K sep be a root of X 2 − X − y3. Then L = M(α) is a totally
ramified Q8-extension of K .

Since ℘(α3) = y3 has M-valuation −3, we get vL(α3) = −3.

Set t = y/α3. Then vL(t) = −2 − (−3) = 1, so t is a uniformizer for L.

Recall that σ1 ∈ Gal(M/K ) satisfies σ1(y) = y + s. We find that σ1
extends to σ1 ∈ Gal(L/K ) such that σ1(α3) = α3 + s2y + s2.

Similarly, we may extend σ2 ∈ Gal(M/K ) to σ2 ∈ Gal(L/K ) by setting
σ2(α3) = α3 + sy + s.

Since α3t = y we get

(α3 + s2y + s2)σ1(t) = y + s
(α3 + sy + s)σ2(t) = y + s2.



A quaternion subgroup of N (F4)
We’ve shown that y , α3, t, σ1(t) satisfy 3 polynomial equations over F4:

α2
3 − α3 = y3, tα3 = y , (α3 + s2y + s2)σ1(t) = y + s.

We want to deduce from these a polynomial relation between t and
X = σ1(t). This relation (if it exists) will be an element of the following
ideal in the polynomial ring F4[y , α3, t,X ]:

J = (α2
3 − α3 − y3, tα3 − y , (α3 + s2y + s2)X − y − s).

Using Magma we find a Gröbner basis for J using an elimination term
order. We find that σ1(t) is a root of

fσ1(t,X ) = (t2 + 1)X 2 + X + st2 + t.
Similarly, σ2(t) is a root of

fσ2(t,X ) = (t2 + 1)X 2 + X + s2t2 + t.
We can use these to compute terms of σ1(t) and σ2(t) recursively:
σ1(t) = t + s2t2 + s2t4 + st6 + st8 + st10 + s2t12 + s2t14 + s2t16 + O(t18)
σ2(t) = t + st2 + st4 + s2t6 + s2t8 + s2t10 + st12 + st14 + st16 + O(t18).



Automata for σ1 and σ2
It follows from the preceding slide that σ1(t), σ2(t) are algebraic over
F4(t). Hence by Christol’s theorem, the sequence of coefficients of σi(t) is
the output of a finite automaton.

We can apply Algorithm 3.2.3 of [BCT22] to construct these automata.
The automata for σ1(t) and σ2(t) have the same digraph and the same
edge labels. The state labels are determined by the terms in the
expansions for σi(t) that we computed above.

State 0 1 2 3 σ1 label σ2 label
1 2 3 4 5 0 0
2 2 6 7 4 0 0
3 3 5 5 5 1 1
4 6 8 7 4 s2 s
5 5 5 5 5 0 0
6 6 6 7 4 s2 s
7 8 8 7 4 s s2

8 8 6 7 4 s s2



Automaton for σ1
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Automaton for σ2
1

By similar reasoning we find that σ2
1(t) is a root of fσ2

1
(X ) = t2X 2 + X + t.

We get the following automaton for σ2
1:

State 0 1 2 3 σ2
1 label

1 2 3 4 5 0
2 5 3 5 5 0
3 3 5 5 5 1
4 5 2 3 4 0
5 5 5 5 5 0

0
1

Start

0

5

1

3

0

2

0

4

0 1 2 3



Computing automata for σ3
1, σ3

2, σ3, and σ3
3

Let σ3 = σ1 ◦ σ2. Automata for σ3
1, σ3

2, σ3, and σ3
3 can also be computed.

We find that σ3
1(t), σ3

2(t), σ3(t), σ3
3(t) are roots of polynomials

fσ3
1
(t,X ) = (t2 + s)X 2 + X + t2 + t

fσ3
2
(t,X ) = (t2 + s2)X 2 + X + t2 + t

fσ3(t,X ) = (t2 + s2)X 2 + X + st2 + t
fσ3

3
(t,X ) = (t2 + s)X 2 + X + s2t2 + t.

The automata for σ3
1, σ3

2, σ3, and σ3
3 all have the same digraph and the

same edge labels, but different state labels:



Automata for σ3
1, σ3

2, σ3, and σ3
3

State 0 1 2 3 σ3
1 label σ3

2 label σ3 label σ3
3 label

1 2 3 4 5 0 0 0 0
2 2 6 7 8 0 0 0 0
3 3 5 5 5 1 1 1 1
4 9 10 11 4 s2 s 1 1
5 5 5 5 5 0 0 0 0
6 6 9 12 13 s s2 s s2

7 14 10 11 4 1 1 s s2

8 15 16 7 8 1 1 s2 s
9 9 15 11 4 s2 s 1 1
10 10 6 7 8 s s2 1 1
11 16 14 12 13 s2 s s2 s
12 10 16 7 8 s s2 1 1
13 6 14 12 13 s s2 s s2

14 14 15 11 4 1 1 s s2

15 15 6 7 8 1 1 s2 s
16 16 9 12 13 s2 s s2 s



Automaton for σ3
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The case δ = s

Suppose δ = s, so that α3 is a root of X 2 − X − y3 − s.

In this case, Magma tells us that σi(t) is a root of fσi (t,X ), where

fσ1(t,X ) = (1 + t + t3)X 3 + (s2 + st + t2 + s2t3)X 2

+ (1 + s2t)X + t + s2t2 + t3

fσ2(t,X ) = (1 + t2 + t3)X 3 + (s2 + st2 + s2t3)X 2

+ (1 + st + st2 + st3)X + t + s2t2 + t3.

Applying the algorithms as above we find that σ1, σ2 are represented by
automata with 175 and 169 states, respectively.

The other order-4 elements of this Q8-subgroup of N (F4) are represented
by automata with 500+ states.



D4-subgroups of N (F4)

We can use a similar approach to describe conjugacy classes of
D4-subgroups of N (F4) with minimum ramification breaks.

The smallest possible breaks for a D4-subgroup of N (F4) are 1,1,5. There
are three conjugacy classes of D4-subgroups of N (F4) with these
ramification breaks.

All three of these conjugacy classes contain a subgroup which is generated
by two elements, each of which is represented by an automaton with 104
states.

For example . . .



Automatons for generators of a D4-subgroup of N (F4)
State 0 1 2 3 τ1 label τ2 label State 0 1 2 3 τ1 label τ2 label

1 2 3 4 5 0 0 53 16 75 18 26 s s2

2 6 7 8 9 0 0 54 7 8 9 47 0 0
3 3 10 11 11 1 1 55 69 53 76 55 s2 s
4 12 13 14 15 s2 s 56 12 77 14 74 s2 s
5 16 17 18 19 s s2 57 66 31 78 33 s s2

6 6 20 8 8 0 0 58 21 16 59 33 0 0
7 21 7 21 22 0 0 59 21 11 59 38 0 0
8 23 24 25 26 1 1 60 10 21 30 21 0 0
9 12 27 28 29 s2 s 61 4 27 79 29 s2 s
10 21 10 21 30 0 0 62 16 80 71 15 s s2

11 16 31 32 33 s s2 63 20 4 81 34 0 0
12 12 22 14 34 s2 s 64 82 62 83 64 1 1
13 12 35 15 21 s2 s 65 23 84 52 38 1 1
14 4 36 34 22 s2 s 66 16 85 32 55 s s2

15 4 13 37 15 s2 s 67 82 24 86 26 1 1
16 16 30 32 38 s s2 68 16 87 33 22 s s2

17 23 39 40 15 1 1 69 12 88 14 43 s2 s
18 11 41 42 43 s s2 70 89 49 19 46 1 1
19 44 17 45 19 s s2 71 11 17 90 19 s s2

20 21 20 21 46 0 0 72 12 91 61 33 s2 s
21 21 21 21 21 0 0 73 20 11 92 38 0 0
22 12 36 15 22 s2 s 74 89 72 93 74 1 1
23 23 46 25 47 1 1 75 23 94 40 34 1 1
24 23 48 26 21 1 1 76 89 24 95 26 1 1
25 8 49 47 46 1 1 77 12 96 15 30 s2 s
26 8 24 50 26 1 1 78 82 49 29 46 1 1
27 23 51 52 33 1 1 79 7 11 94 38 0 0
28 4 53 54 55 s2 s 80 12 92 28 47 s2 s
29 56 27 57 29 s2 s 81 23 72 40 74 1 1
30 16 58 33 30 s s2 82 23 97 25 19 1 1
31 16 59 33 21 s s2 83 56 13 98 15 s2 s
32 11 58 38 30 s s2 84 16 41 71 43 s s2

33 11 31 60 33 s s2 85 16 99 33 46 s s2

34 7 4 4 34 0 0 86 56 36 43 22 s2 s
35 21 4 35 34 0 0 87 21 44 59 55 0 0
36 21 12 35 15 0 0 88 12 100 15 46 s2 s
37 7 21 22 21 0 0 89 23 101 25 29 1 1
38 10 11 11 38 0 0 90 10 4 84 34 0 0
39 12 5 61 38 s2 s 91 16 81 18 47 s s2

40 8 62 63 64 1 1 92 23 62 52 64 1 1
41 12 65 28 26 s2 s 93 44 31 102 33 s s2

42 10 8 5 47 0 0 94 12 53 61 55 s2 s
43 66 41 67 43 s s2 95 44 58 55 30 s s2

44 16 68 32 64 s s2 96 21 56 35 43 0 0
45 69 13 70 15 s2 s 97 23 103 26 22 1 1
46 23 49 26 46 1 1 98 66 58 64 30 s s2

47 20 8 8 47 0 0 99 21 66 59 64 0 0
48 21 8 48 47 0 0 100 21 69 35 74 0 0
49 21 23 48 26 0 0 101 23 104 26 30 1 1
50 20 21 46 21 0 0 102 69 36 74 22 s2 s
51 16 9 71 34 s s2 103 21 82 48 29 0 0
52 8 72 73 74 1 1 104 21 89 48 19 0 0
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