On some semidirect products of skew braces arising in Hopf-Galois theory

Paul Truman

Keele University, UK

Hopf algebras and Galois module theory UConn (Online), June 2025

Overview

- The Hopf-Galois correspondence and extension problem
- The connection with skew braces and their substructures
- A family of semidirect products of skew braces
- Classifying skew braces in this family
- Consequences for Hopf-Galois theory

The Hopf-Galois correspondence

- Let *L*/*K* be a finite *H*-Hopf-Galois extension of fields.
- Given a Hopf subalgebra H' of H let

 $L' = L^{H'} = \{ x \in L \mid h(x) = \varepsilon(h)x \text{ for all } h \in H' \}.$

- Say that L' is realized by H.
- L/L' is $(L' \otimes H')$ -Galois.
- If H' is a normal Hopf subalgebra of H then L'/K is \overline{H} -Galois, where $\overline{H} = H//H'$, and there is a short exact sequence of K-Hopf algebras

$$K \to H' \to H \to \overline{H} \to K.$$

 $L' \otimes H'$

Ħ

K

Н

The Hopf-Galois extension problem

Now suppose we are given

- a finite extension of fields L/K and an intermediate field L',
- *K*-Hopf algebras *H'* and \overline{H} such that L/L' is $L' \otimes H'$ -Galois and L'/K is \overline{H} -Galois.

Problem

Construct K-Hopf algebras H that fit into a short exact sequence

$$K \to H' \to H \to \overline{H} \to K$$

and such that L/K is H-Galois in a way compatible with the given structures on L/L' and L'/K.

Induced Hopf-Galois structures

• Suppose that L/K is Galois with Gal(L/K) = G, and write $L' = L^B$.

Theorem (Crespo, Rio, Vela, 2016) Suppose that B has a normal complement A in G.

Then we can solve the Hopf-Galois extension problem on the tower L/L^B and L^B/K .

- A Hopf-Galois structure constructed in this way satisfies H ≅ H' ⊗_K H.
- It also realizes both L^B and L^A via normal Hopf subalgebras.
- Note that L^B/K need not be Galois.

The connection with skew braces

• Now write
$$Gal(L/K) = (G, \circ)$$
.

Given a further binary operation · on G, the triple (G, ·, ∘) is skew brace iff (G, ·) is a group and for each x ∈ G the function

$$\gamma_x(y) = x^{-1} \cdot (x \circ y)$$

is an automorphism of (G, \cdot) .

In this case the function γ : (G, ∘) → Aut(G, ·) is a homomorphism, called the γ-function of the skew brace.

Theorem (Stefanello & Trapenniers, 2023)

- There is a bijection between binary operations · on G such that (G, ·, ∘) is a skew brace and Hopf-Galois structures on L/K.
- We have (G, ·, ∘) ↔ L[G, ·]^(G, ∘), where (G, ∘) acts on L as the Galois group and on (G, ·) via γ.

Hopf subalgebras and ideals

- Recall: $Gal(L/K) = (G, \circ)$ and $(G, \cdot, \circ) \iff H = L[G, \cdot]^{(G, \circ)}$.
- The Hopf subalgebras of H are H_A = L[A, ·]^(G, ◦) with (A, ·, ◦) a subskew brace of (G, ·, ◦) that is stable under γ(G); a left ideal.
- H_A is a normal Hopf subalgebra if and only if $(A, \cdot) \trianglelefteq (G, \cdot)$.
- $L^{H_A} = L^{(A,\circ)}$ is a normal extension of K if and only if $(A,\circ) \leq (G,\circ)$.
- Hence normal Hopf subalgebras whose fixed fields are normal over K correspond with *ideals* (A, ·, ∘) of (G, ·, ∘).

Punchline

The Hopf-Galois extension problem on a tower of Galois extensions $L/L^{(A,\circ)}$ and $L^{(A,\circ)}/K$ is equivalent to the skew brace extension problem

$$\{e\} \rightarrow (A, \cdot, \circ) \rightarrow (G, \cdot, \circ) \rightarrow (G/A, \cdot, \circ) \rightarrow \{e\}.$$

Semidirect products

• Recall: The Hopf-Galois extension problem on tower of Galois extensions $L/L^{(A,\circ)}$ and $L^{(A,\circ)}/K$ is equivalent to

$$\{e\} \rightarrow (A, \cdot, \circ) \rightarrow (G, \cdot, \circ) \rightarrow (G/A, \cdot, \circ) \rightarrow \{e\}.$$

• A natural class to study are the *split extensions* (semidirect products).

Definition (Facchini and Pompili, 2024)

A skew brace $G = (G, \cdot, \circ)$ is said to be the *internal semidirect product* of an ideal A and a subskew brace B if

- $A \cap B = \{e\};$
- $A \cdot B = A \circ B = G$.
- There is a corresponding notion of the *external semidirect product*, but these are complicated to construct.

Paul Truman

Simplifying the external construction

Simplification

We shall classify skew braces that are the internal semidirect product of an ideal A and a left ideal B.

Example

Suppose
$$(G, \circ) = (A, \circ) \rtimes (B, \circ)$$
, and consider (G, \circ, \circ) .

We have $\gamma_x(y) = y$ for all $x, y \in G$, so A is an ideal of G, B is a left ideal

of G, and G is the semidirect product of these.

Example

Suppose $(G, \circ) = (A, \circ) \rtimes (B, \circ)$, and consider (G, \circ^{op}, \circ) .

We have $\gamma_x(y) = x \circ y \circ \overline{x}$ for all $x, y \in G$. Hence A is an ideal of G, and

B is subskew brace, but not a left ideal.

Here G is the semidirect product of an ideal and a subskew brace.

Notation for external semidirect products

Definition

Given skew braces $A = (A, \cdot, \circ)$ and $B = (B, \cdot, \circ)$ and group homomorphisms

$$arphi : (B, \circ) o \operatorname{Aut}(A, \circ)$$

 $heta : (B, \cdot) o \operatorname{Aut}(A, \cdot),$

let $A \rtimes_{\theta}^{\varphi} B$ denote the Cartesian product $A \times B$, together with the operations

$$(a,b) \circ (a',b') = (a \circ \varphi_b(a'), b \circ b')$$
$$(a,b) \cdot (a',b') = (a \cdot \theta_b(a'), b \cdot b').$$

• Note that $A \rtimes_{\theta}^{\varphi} B$ is not a skew brace in general.

From internal to external

Proposition

If $A \rtimes_{\theta}^{\varphi} B$ is a skew brace then it is the internal semidirect product of the ideal $A \times \{e\}$ and the left ideal $\{e\} \times B$.

Proposition

Suppose that $G = (G, \cdot, \circ)$ is a skew brace which is the internal semidirect product of an ideal A and a left ideal B. Define

$$\varphi: (B, \circ)
ightarrow \mathsf{Aut}(A, \circ) ext{ by } \varphi_b(a) = b \circ a \circ \overline{b}$$

and

$$\theta: (B, \cdot) \to \operatorname{Aut}(A, \cdot)$$
 by $\theta_b(a) = b \cdot a \cdot b^{-1}$.

Then $A \rtimes_{\theta}^{\varphi} B$ is a skew brace and $G \cong A \rtimes_{\theta}^{\varphi} B$.

Classifying external semidirect products in our family

Recall: φ : (B, ◦) → Aut(A, ◦) and θ : (B, ·) → Aut(A, ·) are group homomorphisms.

Theorem

 $A \rtimes_{\theta}^{\varphi} B$ is a skew brace if and only if

•
$$\varphi_b \in \operatorname{Aut}(A, \cdot)$$
 for each $b \in B$;

•
$$\gamma_a \theta_b = \theta_b \gamma_a$$
 for all $a \in A$ and $b \in B$;

•
$$\varphi_b \theta_{b'} = \theta_{b \gamma_b(b')b^{-1}} \varphi_b$$
 for all $b, b' \in B$.

• We shall usually think of A, B and φ as being given, and seek admissible θ for this data.

Recall: $\varphi : (B, \circ) \to \operatorname{Aut}(A, \circ) \text{ and } \theta : (B, \cdot) \to \operatorname{Aut}(A, \cdot).$ Seek

- $\varphi_b \in Aut(A, \cdot)$ for each $b \in B$;
- $\gamma_a \theta_b = \theta_b \gamma_a$ for all $a \in A$ and $b \in B$;

•
$$\varphi_b \theta_{b'} = \theta_{b \gamma_b(b')b^{-1}} \varphi_b$$
 for all $b, b' \in B$.

Example

Let (A, \cdot, \circ) and (B, \cdot, \circ) be skew braces.

Choose $\theta_b = \text{id}$ for all $b \in B$.

Then θ is admissible if and only if $\varphi_b \in Aut(A, \cdot)$ for all $b \in B$.

Recall: $\varphi : (B, \circ) \to \operatorname{Aut}(A, \circ) \text{ and } \theta : (B, \cdot) \to \operatorname{Aut}(A, \cdot).$ Seek

- $\varphi_b \in \operatorname{Aut}(A, \cdot)$ for each $b \in B$;
- $\gamma_a \theta_b = \theta_b \gamma_a$ for all $a \in A$ and $b \in B$;

•
$$\varphi_b \theta_{b'} = \theta_{b \gamma_b(b')b^{-1}} \varphi_b$$
 for all $b, b' \in B$.

Example

Let (A, \circ, \circ) and (B, \circ, \circ) be trivial skew braces.

Fix $i \in \mathbb{N}$ and choose $\theta_b = \varphi_{b^i}$ for all $b \in B$.

Then θ is admissible.

If i = 1 then $A \rtimes_{\theta}^{\varphi} B$ is the trivial skew brace on $(A, \circ) \rtimes (B, \circ)$.

Recall: $\varphi : (B, \circ) \to \operatorname{Aut}(A, \circ)$ and $\theta : (B, \cdot) \to \operatorname{Aut}(A, \cdot)$. Seek

- $\varphi_b \in Aut(A, \cdot)$ for each $b \in B$;
- $\gamma_a \theta_b = \theta_b \gamma_a$ for all $a \in A$ and $b \in B$;

•
$$\varphi_b \theta_{b'} = \theta_{b \gamma_b(b')b^{-1}} \varphi_b$$
 for all $b, b' \in B$.

Example

Let (A, \circ, \circ) be trivial and cyclic and let (B, \circ, \circ) be trivial and abelian. Then all $\theta : (B, \circ) \to \operatorname{Aut}(A, \circ)$ are admissible.

Recall: If (A, \circ, \circ) is trivial and cyclic, (B, \circ, \circ) is trivial and abelian, and $\varphi : (B, \circ) \to \operatorname{Aut}(A, \circ)$ is any homomorphism, then all $\theta : (B, \circ) \to \operatorname{Aut}(A, \circ)$ are admissible.

Example

Let p, q be primes with $p \equiv 1 \pmod{q}$. Let (A, \circ, \circ) have order p and (B, \circ, \circ) have order q, and fix $\varphi : (B, \circ) \to \operatorname{Aut}(A, \circ)$. There are q homomorphisms $\theta : (B, \circ) \to \operatorname{Aut}(A, \circ)$, and they are all admissible.

Back to the Hopf-Galois picture

- Let L/K be a Galois extension with $Gal(L/K) = (G, \circ) \cong (A, \circ) \rtimes (B, \circ).$
- Suppose that $G = A \rtimes_{\theta}^{\varphi} B$.
- Then H = L[G, ·]^(G, ◦) has a normal Hopf subalgebra H_A = L[A, ·]^(G, ◦) and a Hopf subalgebra H_B = L[B, ·]^(G, ◦).
- Hence H solves the Hopf-Galois extension problem on L/L^(A,o) and L^(A,o)/K, and in addition realizes L^(B,o).
- In fact, we have classified all Hopf-Galois structures with these properties.

Induced Hopf-Galois structures again

- Suppose that $(G, \circ) \cong (A, \circ) \rtimes (B, \circ)$.
- Suppose we are given HGS on L/L^(B,◦) and L^(B,◦)/K.
- The former corresponds to a skew brace (B, \cdot, \circ) .
- The latter can be translated to a HGS on the Galois extension $L/L^{(A,\circ)}$.
- This corresponds to a skew brace (A, \cdot, \circ) .
- We find that $\varphi_b \in \operatorname{Aut}(A, \cdot)$ for each $b \in B$.
- Hence we can construct the skew brace $A \rtimes_{id}^{\varphi} B$.
- The corresponding HGS on L/K is the one induced from those on L/L^(B,o) and L^(B,o)/K.

The structure of H

- Recall $(G, \cdot, \circ) \iff L[G, \cdot]^{(G, \circ)}$.
- If (G, \cdot) is the semidirect product of (A, \cdot) and (B, \cdot) then we have

$$L[G,\cdot] \cong L[A,\cdot] \#_L L[B,\cdot].$$

Proposition

If (G, \cdot, \circ) is the semidirect product of an ideal A and a left ideal B then

$$L[G,\cdot]^{(G,\circ)} \cong L[A,\cdot]^{(G,\circ)} \#_{\mathcal{K}} L[B,\cdot]^{(G,\circ)}.$$

- In the case of induced Hopf-Galois structures B is also an ideal, and we have L[G, ·]^(G, ◦) ≅ L[A, ·]^(G, ◦) ⊗_K L[B, ·]^(G, ◦).
- If L/K is an extension of local or global fields this description can be used to address questions of integral module structure.

Questions

Question

Four of the five groups of order p^3 (with p an odd prime) are semidirect products. Which of the skew braces of order p^3 arise via our construction?

Question

A group of order p^2q (with p, q distinct primes) is necessarily a semidirect product. Which of the skew braces of order p^2q arise via our construction?

Question

A group of squarefree order is necessarily a semidirect product. Which of the skew braces of squarefree order arise via our construction?

Question

Can we generalize our construction to allow cocycles with respect to \circ or $\cdot?$

Thank you for your attention.